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Abstract

We present how permutation tests can be applied in experiments using electroencephalog-
raphy (EEG). First, we present the permuco R package which allows permutation tests
on linear model and repeated measures ANOVA with nuisance variables. It uses several
permutation methods and, for comparison of signals, it applies multiple comparisons pro-
cedures like the cluster-mass test or the threshold-free cluster-enhancement. Second, we
show that most of the permutation methods have a geometrical interpretation. Moreover,
we present a real data analysis where the cluster-mass test is used for a full-scalp analysis
of EEG data. We also show that using the slopes of the EEG signals in combination to
the cluster-mass test produces more powerful tests. Third, asymptotic properties of the F
statistic of several permutation methods are derived using the moments of the conditional
distribution by permutations. Fourth, we explain why experiments in psychology should
often be modelised by a cross-random effects mixed effects model (CRE-MEM) and we
show that the assumed correlation structure of the data influences tests of fixed effect
parameters. Finally, we propose a general re-sampling framework to analyse EEG data
when using CRE-MEM.





Résumé

Cette thèse introduit l’application des tests de permutation aux expériences utilisant
l’électroencéphalographie (EEG). Premièrement, nous présentons la librairie R permuco
qui permet des tests de permutation appliqués aux modèles linéaires et à l’ANOVA à
mesures répétées contenant des variables de nuisances. De plus, cette librairie permet
l’utilisation de plusieurs méthodes de permutation et utilise des procédures de compara-
isons multiples tel que le test de masse de groupes (cluster-mass) ou le renforcement de
groupes sans seuil (threshold-free cluster-enhancement) pour la comparaison de signaux.
Deuxièmement, nous montrons que les méthodes de permutation ont une interprétation
géométrique. De plus, nous présentons une analyse de données où le test de masse de
groupes est appliqué sur des données EEG du scalp complet. Ensuite, nous montrons
que la pente des signaux combinée au test de masse de groupes améliore la puissance
statistique du test. Troisièmement, nous déduisons les propriétés asymptotiques de la
statistique F pour plusieurs méthodes de permutation grâce aux moments de la distribu-
tion conditionnelle par permutation. Quatrièmement, nous présentons un argumentaire
en faveur de la modélisation des expériences en psychologie par les modèles mixtes croisés
à effets aléatoires croisés (CRE-MEM) et nous montrons l’importance de la structure de
corrélation lors de leur utilisations pour des tests statistiques. Finalement, nous proposons
un cadre général de tests de ré-échantillonage pour analyser les expériences en psychologie
à l’aide de CRE-MEM.
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Introduction

The following manuscript consists of the work and reflections I produced during 5 years
as a PhD candidate. The general aim is to use permutation tests in experiments using
electroencephalography (EEG). It is motivated by actual experiments in neuroscience
and the complexity of the experimental designs lead me to investigate the topic of cross-
random effects mixed-effects model (CRE-MEM) as well. In the following introduction, I
first introduce an example of an experiment in neuroscience which motivates the thesis,
then some general concepts in permutation tests and how they are applied in neuroscience.
Finally, I explain why CRE-MEM is related to experiment in psychology and neuroscience.

Generally, an EEG experiment records the electrical brain activity of participants while
they see some stimuli. Each participant spends tens of minutes doing the experiment and
a cap of electrodes records their brain activity. During the experiment, they usually
perceive stimuli, and usually need to accomplish a task that depends on the type of
stimuli. For instance, in the EEG dataset in the permuco (Frossard and Renaud, 2018)
R (Chambers, 2009) package, the participants had to see stimuli (faces) with 2 types of
emotions, either angry or neutral, with 2 types of visibility, supraliminal (166 ms) or
subliminal (16 ms) and with 2 types of laterality, either displayed at the right or at the
left of the screen (Tipura et al., 2017). Neuroscientists want to know if the experimental
setting (the design of the experiment) influences the EEG signals and produces signals
that are different. Moreover, they are also interested by when (after seeing the stimuli)
and where (on which electrode) these differences occur. The ”raw” dataset is usually
pre-processed before being analysed. In the pre-processing, we delete trials that are too
noisy (e.g. the eye blinks disturb the recording), or filter frequencies that may come from
the electric grid (50 Hz). We also adjust the time such that each trial is synchronized;
for instance at the event, the precise time when the stimuli is shown. Once the data are
”cleaned”, neuroscientists compute event-related potentials (ERP), which are averages of
the signals at each time-point. These averages are grouped by electrode and experimental
setting. Figure 1 shows ERPs of the electrode O1 of the experiment described above.
We see that before the event some small differences between the experimental settings
occur; which are obviously caused only by statistical noise. However, we also see a larger
difference between ERPs of pictures that are subliminal (16 ms, represented by the thin
lines) and supraliminal (166 ms, represented by the thick lines). The statistical problem
is to determine which differences are likely to be generated by random noise or can be
attributed to the experimental design.

In that multivariate setting, Karniski et al. (1994) recognize flaws using parametric
approaches like MANOVA or repeated measures ANOVA to test the difference between
experimental conditions. They argue that testing the differences of EEG recording be-
tween two groups using the parametric methods implies assumptions on the EEG data
generation process which are not satisfied. For repeated measures ANOVA, the assump-
tions of sphericity is almost always violated for EEG data. Moreover, using MANOVA
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Figure 1: ERP of the electrode O1. In the top panel, one line corresponds to the signal of
one participant (out of 15) in one experimental setting (out of 8). In the bottom panel,
each line corresponds to the average ERP over all participants in one experimental setting.
The vertical line corresponds to the time of the event.
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needs the assumption of normality which is also not fulfil in EEG. Using these methods
despite the violation of assumption usually increase the type I error rate of the tests. To
solve this problem, Karniski et al. (1994) introduce re-sampling methods, more precisely
permutation tests, to EEG data analysis to test hypotheses on the difference between
signals given the experimental setting.

Arguably, the state-of-the-art statistical methods to detect these effects are based on
permutation tests. They are also called exact test and are an old topic in statistics that was
presented by Fisher (1935) for simple design like in the two-sample t-test. To understand
how permutation tests are applied when analysing complex EEG data, we first recall the
basics for observations measured on two groups (or conditions). The rationale behind
permutation tests is quite straightforward. In general, a statistical test uses an observed
sample to decide if a null hypothesis on the population should be assumed false (e.g. the
null hypothesis for a t-test is: two populations have the same mean). The test determines
if observing a similar (or more extreme) sample is a likely event under the null hypothesis;
it is expressed for permutation tests as an equality of distribution of the populations (e.g.
H0 : FA = FB). If the null hypothesis is true, for each observation, there is no link
between the response variable and the membership to one of the populations. In addition,
observing our sample is as likely as observing a sample where each group membership and
response variable are mixed together; mixing together group membership and response
variable creates what we call a permutation of the observed sample. Hence, when we
assume that the null hypothesis is true, each permutation of the sample is equally likely.
It follows that computing a statistic on each permuted sample produces a set of statistics
that are equally likely under the null hypothesis. Using this set of statistics and the
statistic computed on the observed sample, we compute a p-value as the proportion of
permuted statistics that are more extreme than the observed one.

The explanation above does not need a specific statistic to be valid. Therefore, one
advantage of this procedure is that permutation tests do not impose restrictions on the
choice of the statistic. Furthermore, they produce an exact test even for unusual statistics,
unless there is ties in the values of the statistics. This property is particularly useful when
generalized to detect difference between signals as it allows us to combine statistics of
time-points.

Formally, permutation tests are also attractive because they only need the assumption
of exchangeability of the data under the null hypothesis. This means that, under the null
hypothesis, the response variable must have the same multivariate distribution after any
permutations. It follows that permutation tests handles skewed, heavy-tailed or unknown
distributions. They are said to be robust (Lehmann and Romano, 2008) as they stay exact
under non-gaussian distributions (this properties is also refereed as robustness of validity).
However, the power of the test is also of interest and, in that case, the choice of the test
statistic matters. Indeed, Welch (1987) and Welch and Gutierrez (1988) show that, if data
are contaminated by extreme values, using the trimmed mean or the median improves
the efficiency of permutation tests compared to a t statistic. Moreover, in presence of
outliers, using robust statistic improves the inference as the distribution of interest may
not be the full distribution but only the unperturbed distribution (Heritier et al., 2009),
i.e. the distribution freed from unrelated and outlying effects. In that case, the robustness
properties of permutation tests do not naturally solve this problem. Indeed, a permutation
test is robust only when the test statistic has robust properties, i.e. is not be influenced
by outlying points. The usual F or t statistics are based on means and sums of squares
which are even influenced by a small proportion of outliers. In fact, the robust properties
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of the statistic are independent of the approach: parametric or by re-sampling. To solve
this problem, parametric approaches using M -estimators haven been developed by Huber
(1964). These estimators have the property to reduce the influence of outlying data by
down-weigthing them and, consequently, are robust to contamination by extreme values.
Moreover, their asymptotic distributions are known which allows tests of hypothesis. The
inference is done on the uncontaminated distribution while permutation tests (using non-
robust statistics) infer on the contaminated distribution. Finally, re-sampling approaches
using the bootstrap (Efron, 1979) have been proposed for computing confidence interval
(Salibian-Barrera and Zamar, 2002) or testing hypothesis (Salibian-Barrera, 2005) in a
robust way in regression models.

For permutation tests, the assumption of exchangeability of the data is not fulfilled
even in simple models like factorial ANOVA with only 2 factors and their interaction.
Indeed, when we are interested to obtain the p-value for the effect of one factor (or the
interaction), all other effects should be consider as nuisance effects that violate the ex-
changeability assumption as they produce unequal first moment under the null hypothesis
of interest. In the example of Figure 1, to test the difference between the 2 levels of visi-
bility, one must take into account that there might be a true effect of the emotion, of the
laterality and of all of the higher order interactions. Even under the null hypothesis (in
our example: the main effect of visibility is absent), all these effects induce means (first
moments) of the observations that are possibly different between the groups or conditions.
Without adjusting for these effects, the test of visibility is potentially wrong as it would
include other effects. Using a naive permutation approach violates the exchangeability
assumption which usually results in an increase of the type I error rate. Several authors
have tried to circumvent to this problem. First, authors derived asymptotic properties of
the permutation tests under data that are not exchangeable (Pauly et al., 2015). Usually
these asymptotic distributions are only derived for specific statistics and the permuta-
tion tests lose the flexibility of the choice of the statistic. Secondly, authors proposed
to restrict the number of permutations (Pesarin, 2001; Edgington and Onghena, 2007;
Anderson and Braak, 2003). In some designs, only a subset of the permutations conserves
the exchangeability of the data under the null hypothesis and an exact test is derived
using only this subset. The simplest example may be for paired sample design where
permutations within each participant are exchangeable under the null hypothesis. These
procedures widen the range of models with exact test. However, they are not generalizable
to the general linear model framework. The third strategy is changing or decomposing
the model before performing unrestricted permutations. Those procedures try to reduce
the effect of the nuisance variables but may not create exact tests. In this case, the
flexibility of the procedures bares the cost of imprecision of the type I error rate. These
permutation methods have been developed by Draper and Stoneman (1966), Dekker et al.
(2007), Kennedy (1995), Huh and Jhun (2001), Freedman and Lane (1983) or ter Braak
(1992), and Winkler et al. (2014) summarized them in a common notation. In this thesis,
we propose new theoretical works on these issues (Chapter 2 and 3) as well as software
implementing these methods (Chapter 1).

Moreover, in the top panel of Figure 1, each ERP (or line) corresponds to a given type
of stimuli shown to a participant during the experiments. These stimuli should be assumed
to be sampled among a population of stimuli as, for instance, the particular images of
”angry” faces used by Tipura et al. (2017) are only a subset of all possible ”angry”
faces. Indeed, a new experimenter would certainly select others images of faces for the
same ”angry” level for a replication of this experiment. In order, to be able to interpret
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the inference for the population of faces and not only on the subset of the particular
stimuli selected by the experimenter, the statistical analysis must assume a sampling
of both participants and stimuli. These 2 different samplings imply some covariances
between observations as, for instance, each observation recorded using the same stimulus
is probably correlated across participants. Not taking into account these correlations in
the statistical model implies an increase of the type I error rate (Bürki et al., 2018) up
to 80%. Once again, when using a naive permutation test these correlations violate the
exchangeability assumption. However, in that case, it is the covariance of the observations
which is not exchangeable any more. In this thesis, Chapter 4 covers this topics in a
parametric setting and Chapter 5 proposes permutation methods for EEG data that take
into account the variability induced by the 2 samples.

The bootstrap is also a re-sampling methods that allows to produce p-values for hy-
pothesis testing (Efron and Tibshirani, 1994). Depending on the way bootstrap is used,
we can derive decision of statistical test from the bootstrap confidence interval or, follow-
ing Efron (1982) proposal, we can use the bootstrap t, initially proposed in the regression
framework. The first solution is not adapted to our setting as we may be interested in
the test of multiple parameters simultaneously. Moreover, in the context of EEG data
analysis, re-sampling methods need to be used in combination with multiple compar-
isons procedures. However, the second approach is similar to some permutation methods.
Indeed, the proposition of ter Braak (1992), which is one of the permutation method
presented in Chapter 1, is directly inspired by the bootstrap t. Moreover, in the two
samples problem, Pernet et al. (2015) use the bootstrap t to test the difference between
EEG signals and show that it gives similar results than permutation tests in a simulation
study. ter Braak (1992) summarizes well the relationship between bootstrap and per-
mutation when it comes to hypothesis testing: ”In both approaches, there is the choice
what to permute or to bootstrap: the data values themselves or the residuals?”. Indeed,
in principle, all permutation methods presented in Winkler et al. (2014) may be used
by replacing permutation (sampling without replacement) by bootstrap (sampling with
replacement) without probably inducing a large deviation of the re-sampled distribution
and therefore the p-value. However, to our knowledge no specific simulation study have
been proposed to evaluate differences between these two re-sampling strategies.

Recent advances make permutation tests especially useful to analyse neuroscience
data like EEG signals. First, note that they need a lot of computing power which is the
reason that at the time of Fisher (1935) the parametric procedure was more attractive.
With the increase in computing power of the late 90’s and 2000’s, permutation tests
showed a renewed interest (David, 2008). Moreover, they are particularly interesting for
multiple comparisons procedures (Troendle, 1995; Maris and Oostenveld, 2007; Smith and
Nichols, 2009). The field of neuroscience clearly requires multiple comparison procedures
as in both EEG and functional magnetic resonance imaging (fMRI) data analysis, a large
number of tests is performed. In EEG, each response variable is a signal (or a map when
using fMRI) measured at a high frequency (up to 1024Hz) during almost one second.
This corresponds to almost 1000 measured for only one electrode and the actual caps
record 32 electrodes or more. Usually, one test is performed at each time point for each
electrode. In total, a full-scalp EEG experiment often involves more than 10000 tests 1.
For the rest of the discussion and without loss of generality, we focus, for clarity, on only

1For fMRI, the number of tests is even higher. The human brain is around 1′200cm3, and represented
by a 3D grid of small size voxels (around 1mm3) which store the BOLD signal. It implies up to 1 million
tests for a full brain analysis.



6

Table 1: Classification of multiple test between the true hypothesis and statistical decision
True hypothesis/Decision Significant tests Non-significant tests Total

True H0 V U m0
False H0 S T m−m0 = m1

Total R m−R m

one electrode. As shown by Benjamini and Hochberg (1995), it is useful to address the
multiple comparisons problem by classifying each test in a two-entries table (see Table 1).
When performing m tests, an unknown number m0 ≤ m of tests are under H0 and an
unknown number of tests m1 = m − m0 are under H1. For any procedure, the total
number of true null hypothesis (m0) is then split into V type I errors and U correctly
non-rejected tests. In the ”frequentist” approach, we try to control the number of type I
errors. By assuming independent and exact tests using an individual type I error rate α,
we have E(V/m0) = α. Hence, the probability of type I error increases with the number
m0 of tests under the null hypothesis. In that setting, we define the family-wise error
rate (FWER) as q = P (V ≥ 1). In addition, controlling the FWER allows us to be more
confident in the total number of rejected tests R as true findings; q is usually chosen with
the same value than α. Note that the FWER is not the only measure that is useful to
control and Benjamini and Hochberg (1995) shows that controlling the false discovery
rate (FDR) defined as qFDR = E(V/R) where qFDR = 0 when R = 0 leads to powerful
methods that reduce the number of type I errors.

In order to control the FWER, well-known and general procedures, like Bonferroni
(Dunn, 1958) or Holm (Holm, 1979), have been proposed. However, they are not adapted
to the number of tests in neuroscience. Indeed the correction to control the FWER would
be so restrictive that almost no test would be declared significant (assuming the usual
effect size and constraints on the sample size of EEG experiments). Moreover, the EEG
signals have both errors highly correlated and the true effects are also spatially and tem-
porally distributed which is information that is not used by these methods. Permutation
tests consider the correlation between the tests naturally. By applying the same permu-
tation for each time-point, we conserve the correlation between tests and, as explained in
Figure 2, it is used to improve the multiple comparisons procedure.

Moreover, another advantage to permutation test in neuroscience is that it does not
need neither a modelization of the spatio-temporal correlation, nor of the error terms.
Eklund et al. (2016) have shown that parametric methods that rely of these modelizations
fail to control the FWER for fMRI while permutation tests which do not rely on these
assumptions keep a FWER close to the nominal levels.

However, the use of permutation tests in neuroscience is limited when the experimen-
tal designs become too complex. Even if permutation methods have been proposed for
repeated measures ANOVA (rANOVA) (Kherad-Pajouh and Renaud, 2015), the design of
experiment does not always fall into this framework. The recording of the brain activity
is made after participants react to stimuli. In addition, neuroscientists want to generalize
their findings to both the population of participants and the population of stimuli (e.g.
images of faces). In that case, the models need to consider the variability induced by the
sampling of participants and also by the sampling of stimuli. The cross-random effects
mixed-effect model (CRE-MEM) is the appropriate framework to analyse this type of
data.
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Figure 2: The top-left panel shows pairs of t-statistics under the null hypothesis computed
on 4000 samples from uncorrelated variables. Using the 2 uncorrected tests results in a
FWER of 9.4%. The correction required to control the FWER should be more stringent
than the one applied to the 2 correlated variables (top-right panel, ρ = .8) which results to
a lower FWER of 7.2%. Without any modelization of the correlation between the 2 tests,
the permutation tests recreate multivariate distributions with an appropriate correlation.
The bottom-left panel shows the distribution by permutation of the uncorrelated dataset
which statistic is marked by the red cross in the top-left panel and the bottom-right panel
shows the distribution by permutation of the correlated dataset marked by the cross in
the top-right panel. The multivariate distributions by permutation maintain ”naturally”
the correlation between the tests and allow us to easily adjust the multiple comparison
procedures.
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However, even in the univariate (and fully parametric) case, the choice of the model,
especially its correlation structure, is still in debate. Several propositions have been
made for experiments crossing 2 samples in psychology. The arguments usually confront
a design-based approach (the experimental design defines the correlation structure (Barr
et al., 2013)) to a data-based approach (the goodness of fit defines the correlation structure
(Bates et al., 2015)). Note that both approaches have different influence on the type I
error rate, or on the power of the tests.

Nonetheless, Judd et al. (2012) shows that psychologists may not take into account
the random effects associated to the stimuli, and instead, were using the well-known
repeated measures ANOVA (rANOVA) by averaging the data over the stimuli. It usually
implies an increase of the type I error rate. In neuroscience, no method produces both
a powerful control of the type I error rate and a modelization of the variability of both
participants and stimuli. Bürki et al. (2018) show also an increase of the type I error
rate when ignoring the variability of the stimuli in EEG experiment. However, in order
to apply permutation tests of a fixed parameter of a CRE-MEM, the assumption of
exchangeability is violated by both other fixed effects and by its complex correlation
structure. Hence, both the first moment and the covariance of the response variable
violate the exchangeability assumption.

Finally, the optimization of a CRE-MEM is a challenging task that requires a lot of
computing power. In neuroscience experiments, this optimization must be performed for
each test (typically on more than 1000 tests) and it usually creates a practical frontier
that also needs to be addressed.

Chapter 1 contains the article ”Permutation Tests for Regression, ANOVA and Com-
parison of Signals : the permuco Package” submitted to the Journal of Statistical Soft-
ware which presents the permuco package. The package proposes several permutation
methods for ANOVA, regression and repeated measures ANOVA as well as multiple com-
parisons procedure like the cluster-mass test or the threshold-free cluster-enhancement
(TFCE) for comparison of signals. The permuco package is the first software to im-
plement several permutation methods within the same package. The other available
packages are usually focused on only one method or only one particular statistic. For
research purpose, it has been a necessary task to implement these methods. The project
of this package began as a set of functions to test the existing permutation methods
to understand their advantages and flaws. It was the natural following step to com-
bine these functions into a single R package for the scientific community. The need
for such software was present as permuco has already been used in several peer re-
view publications through several fields, including ecology (Kern and Langerhans, 2019;
Musariri et al., 2018), genetic (Soler et al., 2019; Allen et al., 2018) or psychology (Hart-
mann et al., 2019; Godfrey et al., 2019) and has been downloaded more than 4000 times
(https://ipub.com/dev-corner/apps/r-package-downloads/) since it was made available on
CRAN in January 2018.

Chapter 2 presents some complements on the permutation methods and multiple com-
parisons procedure implemented in the permuco package. Section 2.1 describes the ge-
ometrical interpretation of some permutation methods. Then, Section 2.2 describes my
involvement in the application of cluster-mass test in Cheval et al. (2018) and presents
functions for a full scalp cluster-mass test that will be added in a next release of permuco.
Finally, Section 2.3 presents an extension of the cluster-mass test using the slope of the
signals to increase the power of the tests.

Chapter 3 presents some theoretical results on permutation methods. Using linear

https://ipub.com/dev-corner/apps/r-package-downloads/
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algebra, we compute analytically, for several permutation methods, the moments of the
numerator and denominator of the F statistic over all permutation (conditionally on the
sample). In finite sample size, these results suggest some corrections of the permutation
methods. In addition, we show the asymptotic properties of the conditional distribution
by permutation of the F statistic for several permutation methods.

Chapter 4 presents the article ”The Correlation Structure of Mixed Effects Models
with Crossed Random Effects in Controlled Experiments”. This article first presents a
classification of variables present in a CRE-MEM and their consequence on the possible
correlation structures. We also compare both theoretically and by simulations several
correlation structures used in the literature. Moreover, we propose a new one that is the
natural extension of the rANOVA to CRE-MEM. Finally, the purpose of this article is also
to give experimenters both tools to understand the influence of the correlation structure
on their analysis and R code to implement them using the lme4 (Bates et al., 2015) or
the gANOVA packages (https://github.com/jaromilfrossard/gANOVA).

The work presented in Chapter 4 is necessary and preliminary to applied random-
ization test in CRE-MEM. Finally, Chapter 5 presents a general framework to apply
randomized tests in CRE-MEM with an extension to the design based signals like in EEG
experiments.

https://github.com/jaromilfrossard/gANOVA




Chapter 1

Permutation Tests for Regression,
ANOVA and Comparison of Signals:
the permuco Package

The following chapter is the main part of an article submitted to the Journal of Statistical
Software.

Abstract. Recent methodological researches produced permutation methods to test pa-
rameters in presence of nuisance variables in linear models or repeated measures ANOVA.
Permutation tests are also particularly useful to overcome the multiple comparisons prob-
lem as they are used to test the effect of factors or variables on signals while controlling
the family-wise error rate (FWER). This article introduces the permuco package which
implements several permutation methods. They can all be used jointly with multiple
comparisons procedures like the cluster-mass tests or threshold-free cluster enhancement
(TFCE). The permuco package is designed, first, for univariate permutation tests with
nuisance variables, like regression and ANOVA, including repeated measures ANOVA; and
secondly, for comparing signals as required, for example, for the analysis of event-related
potential (ERP) of experiments using electroencephalography (EEG). This article de-
scribes the permutation methods and the multiple comparisons procedures implemented.
A tutorial for each of theses cases is provided.

1.1 Introduction
Permutation tests are exact for simple models like one-way ANOVA and t test (Lehmann
and Romano, 2008, pp. 176-177). Moreover it has been shown that they have some
robust properties under non normality (Lehmann and Romano, 2008). However they
require the assumption of exchangeability under the null hypothesis to be fulfilled which
is not the case in a multifactorial setting. For these more complex designs, Janssen and
Pauls (2003), Janssen (2005), Pauly et al. (2015) and Konietschke et al. (2015) show
that permutation tests based on non exchangeable data can be exact asymptotically if
used with studentized statistics. Another approach to handle multifactorial designs is
to transform the data before permuting. Several authors (Draper and Stoneman, 1966;
Freedman and Lane, 1983; Kennedy, 1995; Huh and Jhun, 2001; Dekker et al., 2007;
Kherad Pajouh and Renaud, 2010; ter Braak, 1992) have proposed different types of
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transformations and Winkler et al. (2014) give a simple and unique notation to compare
those different methods.

Repeated measures ANOVA including one or more within subject effects are the most
widely used models in the field of psychology. In the simplest case of one single random
factor, an exact permutation procedure consists in restricting the permutations within
the subjects. In more general cases, free permutations in repeated measures ANOVA
designs would violate the exchangeability assumption. This is because the random effects
associated with subjects and their interactions with fixed effects imply a complex structure
for the (full) covariance matrix of observations. It follows that the second moments are
not preserved after permutation. Friedrich et al. (2017) have derived exact asymptotic
properties in those designs for a Wald-type statistic and Kherad-Pajouh and Renaud
(2015) proposed several methods to transform the data following procedures developed
by Kennedy (1995) or Kherad Pajouh and Renaud (2010).

For linear models, permutation tests are useful when the assumption of normality is
violated or when the sample size is too small to apply asymptotic theory. In addition they
can be used to control the family wise error rate (FWER) in some multiple comparisons
settings (Troendle, 1995; Maris and Oostenveld, 2007; Smith and Nichols, 2009). These
methods have been successfully applied for the comparison of experimental conditions in
both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG)
as they take advantage of the spatial and/or temporal correlation of the data.

The aim of the present article is to provide an overview of the use of permutation
methods and multiple comparisons procedures using permutation tests and to explain
how it can be used in R (Chambers, 2009) with the package permuco. Note that the
presentation and discussion of the available packages that handle permutation tests in
related settings is deferred to section 1.5.1, where all the notions are introduced. Appendix
A.1 shows a comparison of the relevant code and outputs. But first, Section 1.2 focuses on
fixed effect models. It explains the model used for ANOVA and regression and the various
permutation methods proposed in the literature. Section 1.3 introduces the methods for
repeated measures ANOVA. Section 1.4 explains the multiple comparisons procedures
used for comparing signals between experimental conditions and how permutation tests
are applied in this setting. Section 1.5 describes additional programming details and some
of the choices for the default settings in the permuco package. Section 1.6 treats two real
data analyses, one from a control trial in psychology and the second from an experiment
in neurosciences using EEG.

1.2 The Fixed Effects Model

1.2.1 Model and Notation
For each hypothesis of interest, the fixed effects model (used for regression or ANOVA)
can always be written as

y = Dη +Xβ + ε, (1.1)

where y
n×1

is the response variable,
[

D
n×(p−q)

X
n×q

]
is a design matrix split into the nui-

sance variable(s) D (usually including the intercept) and the variable(s) of interest X
associated with the tested hypothesis. D and X may be correlated and we assume with-
out loss of generality that

[
D X

]
is a full rank matrix. The parameters of the full
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model
[

η>
1×(p−q)

β>
1×q

]>
are also split into the parameters associated with the nuisance

variable(s) η and the one(s) associated with the variable(s) of interest β. ε is an error
term that follows a distribution (0, σ2In). The hypothesis tested writes

H0 : β = 0 vs. H1 : β 6= 0. (1.2)

The permutation test is exact under the null hypothesis for finite samples if the data
are exchangeable under the null hypothesis. This assumption is not fulfilled in model
(1.1) as we cannot control the influence of the nuisance term Dη when permuting. In fact,
under the null hypothesis (1.2), the responses follow a distribution (Dη, σ2In) which are
not exchangeable due to the presence of unequal first moments. Pauly et al. (2015) show
however that permuting the responses and using a Wald-type statistic is an asymptotically
exact procedure in factorial designs. Another approach, which is the focus of this paper,
is to transform the data prior to the permutation. Those transformation procedures are
what will be called permutation methods. They are described in Chapter 1.2.2 and are
implemented in permuco.

The permutation of a vector v is defined as Pv and the permutation of the rows of
a matrix M as PM where P is a permutation matrix (Gentle, 2007, pp. 66-67). For
any design matrix M , its corresponding “hat” matrix is HM = M(M>M)−1M> and its
corresponding “residuals” matrix is RM = I−M(M>M)−1M> (Greene, 2011, pp. 24-25).
The full QR-decomposition is:

[
M 0

]
n×n

=
[
QM VM

] [ UM 0
0 0

]
, (1.3)

where QM
n×p

and VM
n×(n−p)

define together an orthonormal basis of Rn and where UM
p×p

is

interpreted as M in the subspace of QM . An important property of the QR-decomposition
is that HM = QMQ

>
M and RM = VMV

>
M (Seber and Lee, 2012, pp. 340-341).

1.2.2 Permutation Methods for Linear Models and Factorial
ANOVAs

The discussed permutation methods are functions that transform the data in order to
reduce the effect of the nuisance variables. They can be computed for all permutations
P ∈ P where P is the set of all nP distinct permutation matrices of the same size.
For any permutation matrix P , a given permutation method will transform the observed
data {y,D,X} into the permuted data {y∗, D∗, X∗}. The permuco package provides
several permutation methods that are summarized in table 1.1 using a notation inspired
by Winkler et al. (2014).

The default method of permuco is the freedman lane method that works as follows:
we first fit the “small” model which only uses the nuisance variables D as predictors. Then,
we permute its residuals and add them to the fitted values. Theses steps produce the
permuted response variable y∗ which constitutes the “new sample”. It is fitted using the
unchanged design D and X. In this procedure, only the residuals are permuted and they
are supposed to share the same expectation (of zero) under the null hypothesis. For each
permutation, the effect of nuisance variables is hence reduced. Using the above notation,
the fitted values of the “small” model can be written as HDy and its residuals RDy. Its
permuted version is pre-multiplied by a permutation matrix, e.g., PRDy. The permuted
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Table 1.1: Permutation methods in the presence of nuisance variables. See text for ex-
planations of the symbols.

method/Authors y∗ D∗ X∗

manly (Manly, 1991) Py D X
draper stoneman (Draper and Stoneman, 1966) y D PX
dekker(Dekker et al., 2007) y D PRDX
kennedy (Kennedy, 1995) (PRD)y RDX
huh jhun (Huh and Jhun, 2001) (PV >D RD)y V >D RDX
freedman lane (Freedman and Lane, 1983) (HD + PRD)y D X
terBraak (ter Braak, 1992) (HX,D + PRX,D)y D X

response variable is therefore simply written as y∗ = HDy + PRDy = (HD + PRD)y, as
displayed in table 1.1. The permuted statistics (e.g. t or F statistics) are then computed
using y∗ and the unchanged design matrices D∗ = D and X∗ = X.

All the remaining permutation methods are also summarized by the transformation
of y, D and X into y∗, X∗ and D∗ and are explained next. The manly method simply
permutes the response (this method is sometimes called raw permutations). Even if this
method does not take into account the nuisance variables, it still has good asymptotic
properties when using studentized statistics. draper stoneman permutes the design of
interest (note that without nuisance variables permuting the design is equivalent to per-
muting the response variable). However, this method ignores the correlation between D
and X that is typically present in regressions or unbalanced designs. For the dekker
method, we first orthogonalize X with respect to D, then we permute the design of in-
terest. This transformation reduces the influence of the correlation between D and X
and is more appropriate for unbalanced design. The kennedy method orthogonalizes
all of the elements (y, D and X) with respect to the nuisance variables, removing the
nuisance variables in the equation, and then permutes the obtained response. Doing
so, all the design matrices lie in the span of X, a sub-space of observed design X and
D. However this projection modifies the distribution of the residuals that lose exchange-
ability (RDy ∼ (0, RDσ

2) for original IID data). The huh jhun method is similar to
kennedy but it applies a second transformation (V >D ) to the data to ensure exchange-
ability (up to the second moment, V >D RDy ∼ (0, In−(p−q)σ

2)). The VD matrix comes
from the Equation 1.3 and has a dimension of n× (n− (p− q)). It implies that the P ’s
matrices for the huh jhun method have smaller dimensions. The terBraak method is
similar to freedman lane but uses the residuals of the full model. This permutation
method creates a new response variable y∗ which assumes that the observed value of the
estimate β̂|y is the true value of β. Computing the statistic using y∗, X, D would not
produce a permutation distribution under the null hypothesis. To circumvent this issue,
the method changes the null hypothesis when computing the statistics at each permuta-
tion to H0 : β = β̂|y = (X>RDX)−1X>RDy|y. The right part of this new hypothesis
corresponds to the observed estimate of the parameters of interest under the full model,
and implicitly uses a pivotal assumption. Note that terBraak is the only method where
the statistic computed with the identity permutation is different from the observed statis-
tic. The notation RD,X means that the residuals matrix is based on the concatenation of
the matrices D and X. See section 1.5.2 for advises on the choice of the method.

For each of the methods presented in Table 1.1, permutation tests can be computed
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using different statistics. For univariate or multivariate β parameters, the permuco
package implemented a F statistic that constitutes a marginal test (or “type III” sum of
square) (Searle, 2006, pp. 53-54). For a univariate β

1×1
, one- and two-sided tests (based

on a t-statistic) are also implemented. We write the F statistic as:

F = y>HRDXy

y>RD,Xy

n− p
p− q

. (1.4)

When q = 1, the t statistic is:

tSt = (X>RDX)−1XRDy√
y>RD,Xy(X>RDX)−1

√
n− p, (1.5)

where the numerator is the estimate of β under the full model. Note that the statistic
can be simplified by a factor of (X>RDX)−1/2 . The two statistics are function of data.
They lead to the general notation t = t(y,D,X) when applied to the observed data
and to t∗ = t(y∗, D∗, X∗) when applied to the permuted data. The permuted statistics
constitute the set T which contains the t∗ for all P ∈ P. We define the permuted
p value as p = 1

nP

∑
t∗∈T I (|t∗| ≥ |t|), for a two-tailed t test, p = 1

nP

∑
t∗∈T I (t∗ ≥ t), for

an upper-tailed t test or an F test and finally p = 1
nP

∑
t∗∈T I (t∗ ≤ t), for a lower-tailed

t test, where I(·) is the indicator function.

1.3 Repeated Measures ANOVA

1.3.1 Model and Notation
We write the repeated measures ANOVA model in a linear mixed effects form:

y = Dη +Xβ + E0κ+ Z0γ + ε, (1.6)

where y
n×1

is the response, the fixed part of the design is split into the nuisance variable(s)

D
n×(p1−q1)

, and the variable(s) of interest X
n×(p1)

. The specificity of the repeated measures

ANOVA model allows us to split the random part into E0
n×(p0

2−q
0
2)

and Z0
n×q0

2

which are the

random effects associated with D and X respectively (Kherad-Pajouh and Renaud, 2015).

The fixed parameters are
[

η>
1×(p1−q1)

β>
1×q1

]>
. The random part is

[
κ>

1×(p0
2−q

0
2)

γ>
1×q0

2

]>
∼

(0,Ω) and ε ∼ (0, σ2I). The matrices associated with the random effects E0 and Z0 can
be computed using:

E0 = (D0′
within ∗ Z0′

∆)> and Z0 = (X0′
within ∗ Z0′

∆)>, (1.7)

where D0
within and X0

within are overparametrized matrices and are associated with the
within effects in the design matrices D and X. Z0

∆ is the overparametrized design matrix
associated to the subjects and ∗ is the column-wise Khatri-Rao product (Khatri and
Rao, 1968). Since the matrices E0 and Z0 are overparametrized, it is not convenient to
compute their corresponding sum of squares. We need versions that are constrained into
their respective appropriate sub-spaces:

E = RD,XE
0 and Z = RD,XZ

0. (1.8)
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Table 1.2: Permutation methods in the presence of nuisance variables for repeated mea-
sures ANOVA.

method y∗ D∗ X∗ E∗ Z∗

Rd keradPajouh renaud (RD) PRDy RDX RDZ
Rde keradPajouh renaud (RD,E) PRD,Ey RD,EX RD,EZ

The matrices E and Z are respectively of rank p2− q2 and q2 and are the ones used to
compute F statistics. Formally, the hypothesis of interest associated with Equation 1.6
writes:

H0 : β = 0 vs. H1 : β 6= 0. (1.9)

1.3.2 Permutation Methods for Repeated Measures ANOVA
Similarly to the fixed effects model, we can test hypotheses using permutation methods
(Kherad-Pajouh and Renaud, 2015). The ones that are implemented in the permuco
package are given in Table 1.2. The two methods are based on a similar idea. By pre-
multiplying the design and response variables by RD or RD,E, we orthogonalize the model
to the nuisance variables. This procedure can be viewed as an extension of the kennedy
procedure (see table 1.1) to repeated measures ANOVA.

The hypothesis in (1.9) is tested based on the conventional F statistic for repeated
measures ANOVA:

F = y>HRDXy

y>HZy

p2

p1
. (1.10)

As for the fixed effects model, the statistic is written as a function of the data t =
t(y,D,X,E, Z) and the permuted statistic t∗ = t(y∗, D∗, X∗, E∗, Z∗) is a function of the
permuted data under the chosen method. The p value is defined as in the fixed effect
case.

1.4 Signal and Multiple Comparisons
In EEG experiments, researchers are often interested in testing the effect of conditions on
the event-related potential (ERP). It is a common practice to test the signals at each time
point of the ERP. In that kind of experiments, thousands of tests are typically carried out
(e.g., one measure every 2ms over 2 seconds) and the basic multiple hypotheses corrections
like Bonferroni (Dunn, 1958) are useless as their power is too low.

Troendle (1995) proposed a multiple comparisons method that considers the corre-
lation between the re-sampling data. This method does not specifically use the time-
neighbourhood information of a signal but uses wisely the general correlation between the
statistics and may be used in more general settings.

Better known, the cluster-mass test (Maris and Oostenveld, 2007) has shown to be
powerful while controlling the family-wise error rate (FWER) in EEG data analysis.
And recently using a similar idea, the threshold-free cluster-enhancement (TFCE) was
developed for fMRI data (Smith and Nichols, 2009) and EEG data (Pernet et al., 2015),
but usually presented only with one factor.

All these approaches use permutations and are compatible with the methods displayed
in Tables 1.1 and 1.2, as shown next. In addition to multiple comparisons procedures that
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use permutation, the well-known Bonferroni and Holm (Holm, 1979) corrections and the
control of the false positive rate by Benjamini and Hochberg (1995) are also implemented
in permuco.

1.4.1 Model and Notation
We can construct a model at each time point s ∈ {1, . . . , k} for the fixed effects design
as:

ys = Dηs +Xβs + εs, (1.11)

where ys is the response variable for all observations at time s and each of the k models
are the same as (1.1). D and X, the design matrices, are then identical over the k time
points. The aim is to test simultaneously all k hypotheses Hs

0 : βs = 0 vs. Hs
1 : βs 6= 0 for

s ∈ {1, . . . , k} while controlling for the FWER through the k tests. Likewise, the random
effects model is written:

ys = Dηs +Xβs + E0κs + Z0γs + εs, (1.12)

where each of the k models are defined as in (1.6) and, similarly, we are interested to test
the k hypotheses Hs

0 : βs = 0 vs. Hs
1 : βs 6= 0 for s ∈ {1, . . . , k}.

For both models, we choose one of the permutation methods presented in Tables 1.1
or 1.2 and compute the k observed statistics ts, the k sets of permutated statistics Ts,
which lead to k raw or uncorrected p values.

To correct them, the k sets of permutated statistics Ts can be analyzed as one set of
multivariate statistic. It is done simply by combining the k univariate permutation-based
distributions into a single k-variate distribution which maintains the correlation between
tests. For each permutation, we simply combine all k univariate permuted statistics
t∗1, . . . , t

∗
k into one multivariate permuted statistic t∗ = [t∗1 . . . t∗k]

>. The three multiple
comparisons procedures described below are all based on this multivariate distribution
and take advantage of the correlation structure between the tests.

1.4.2 Troendle’s Step-Wise Re-Sampling Method
The method developed by Troendle (1995) takes advantage of the form of the multivariate
resampling distribution of the t∗s. If we assume that ts is distributed according to Ts
then by ordering the observed statistics ts we obtain t(1) ≤ · · · ≤ t(s) ≤ · · · ≤ t(k)
with their corresponding k null hypotheses H(1) ≤ · · · ≤ H(s) ≤ · · · ≤ H(k). Then
Troendle (1995) use the following arguments. First, for all s, controlling the FWER
with PH(1),...,H(k)

(
maxi∈{1,...,k} T(i) ≤ t(s)

)
< αFWER is a conservative approach. Secondly,

if we reject H(k) and want to test H(k−1), we can safely assume that H(k) is false while
controlling the FWER. Either H(k) is true and we already made a type I error or was
wrong and we can go as if H(k) was absent. We can then update our decision rule for
testing H(k−1) by PH(1),...,H(k−1)

(
maxi∈{1,...,k−1} T(i) ≤ t(k−1)

)
< αFWER. We continue until

the first non-significant result and declare all s with a smaller t statistic as non-significant.
This procedure is valid in a general setting and is easly implemented for permutation

tests. The permuted sets Ts is interpreted as a nonparametric distribution of the Ts
and based on Troendle (1995), we use the following algorithm to compute the corrected
p value:
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Algorithm 1 Troendle corrected p value
1: Order the k observed statistics ts into t(1) ≤ · · · ≤ t(s) ≤ · · · ≤ t(k)
2: for i ∈ {1, . . . k} do
3: Define the null distribution S(k−i+1) for t(k−i+1) by:
4: for each P ∈P do
5: Return the maximum over the k− i+1 first values t∗(s) for s ∈ {1, . . . , k− i+1}
6: Define the corrected p value p(k−i+1) = 1

nP

∑
t∗∈S(k−i+1)

I
(
t∗ ≥ t(k−i+1)

)
7: Control for a stepwise procedure by:
8: if p(k−i+1) < p(k−i+2) and i > 1 then p(k−i+1) := p(k−i+2)

1.4.3 Cluster-Mass Statistic
This method has been proposed by Maris and Oostenveld (2007) and is commonly im-
plemented in specialised software of EEG data analysis like LIMO (Pernet et al., 2011).
It relies on a continuity argument that implies that an effect will appear into clusters of
adjacent timeframes. Based on all time-specific statistics, we form these clusters using a
threshold τ as follows (see Figure 1.1). All the adjacent time points for which the statistics
are above this threshold define one cluster Ci for i ∈ [1, . . . , nc], where nc is the number
of clusters found in the k statistics. We assign to each time point in the same cluster
Ci, the same cluster-mass statistic mi = f(Ci) where f is a function that aggregates the
statistics of the whole cluster into a scalar; typically the sum of the F statistics or the
sum of squared of the t statistics. The cluster-mass null distribution M is computed
by repeating the process described above for each permutation. The contribution of a
permutation to the cluster-mass null distribution is the maximum over all cluster-masses
for this permutation. This process is described in Algorithm 2.

Algorithm 2 Cluster-mass null distribution M
1: for each P ∈P do
2: Compute the k permuted statistics t∗s for s ∈ {1, . . . , k}.
3: Find the n∗c clusters C∗i as the sets of adjacent time points which statistic is above
τ .

4: Compute the cluster-mass for each cluster m∗i = f(C∗i )
5: Return the maximum value over the n∗c values m∗i .

To test the significance of an observed cluster Ci, we compare its cluster-mass mi =
f(Ci) with the cluster-mass null distribution M . The p value of the effect at each time
within a cluster Ci is the p value associated with this cluster, i.e. pi = 1

nP

∑
m∗∈M I(m∗ ≥

mi).
In addition to the theoretical properties of this procedure (Maris and Oostenveld,

2007), this method makes sense for EEG data analysis because if a difference of cerebral
activity is believed to happen at a time s for a given factor, it is very likely that the time
s+ 1 (or s− 1) will show this difference too.

1.4.4 Threshold-Free Cluster-Enhancement
Although it controls (weakly) the FWER for any a priori choice of threshold, the result
of the cluster-mass procedure is sensitive to this choice. The TFCE (Smith and Nichols,
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Figure 1.1: Display of the 600 statistics corresponding to the tests on 600 time points. Here
4 clusters are found using a threshold τ = 4. Using the sum to aggregate the statistics,
for each cluster i, the shaded area underneath the curve represents its cluster-mass mi.

2009) is closely related to the cluster-mass but gets rid of this seemingly arbitrary choice.
It is defined at each time s ∈ [1, . . . , k] for the statistics ts as:

us =
∫ h=ts

h=t0
e(h)EhHdh, (1.13)

where e(h) is the extend at the height h and it is interpreted as the length of a cluster for
a threshold of h. E and H are free parameters named the extend power, and the height
power respectively. t0 is set close to zero. Figure 1.2 illustrates how the TFCE statistic
is computed for a given time point s.

We construct the TFCE null distribution U by applying the formula in (1.13) at each
time-point of the permuted statistics t∗s for s ∈ {1, . . . , k} to produce for each permutation,
k values u∗s. Then the contribution of a permutation to U is the maximum of all k values
u∗s. In practice, the integral in (1.13) is approximated numerically using small dh ≤ 0.1,
(Smith and Nichols, 2009, Pernet et al. (2015)).

At time s, the statistic ts will be modified using the formula in (1.13). The formula
can be viewed as a function of characteristics in the grey area (its area in the special case
where both E and H are set to 1).

Algorithm 3 Threshold-free cluster-enhancement null distribution U
1: for each P ∈P do
2: Compute the k permuted statistics t∗s for s ∈ {1, . . . , k}
3: Compute the k enhanced statistics u∗s using a numerical approximation of (1.13)
4: Return the maximum over the k value u∗s
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Figure 1.2: The TFCE transforms the statistic ts using formula in (1.13). The extend
e(h), in red, is shown for a given height h. The TFCE statistics us at s can be viewed as
a function of characteristics in the grey area.

To test the significance of a time point s we compare its enhanced statistics us with
the threshold-free cluster-enhancement null distribution U . For an F test we define the
p value as ps = 1

nP

∑
u∗∈U I(u∗ ≥ us).

1.4.5 Interpreting Cluster Based Inference
The cluster-mass test and the TFCE are methods based on clustering time-points and
the interpretation of significant findings is then not intuitive. First, note that Bonferroni,
Holm, the control of the false positive rate and Troendle’s method are not based on
clustering and do not have these issues. Their interpretation is straight-forwards as we
can interpret individually each discovery. For the cluster-mass test the interpretation
should be done at a cluster level: a significant cluster is a cluster which contains at
least one significant time-point. It follows that the cluster-mass test does not allow the
interpretation of the precise location of clusters (Sassenhagen and Draschkow, 2019).
Intuitively, the cluster-mass test is a two steps procedure: first, it aggregates time-points
into clusters, and then summarizes them using the cluster-mass. The inference is only
performed at the second step which looses any information on the location of the clusters.
It implies that the interpretation of individual time-point is proscribed. Finally, the TFCE
statistic is an integration over all thresholds of cluster statistics (Smith and Nichols, 2009).
Therefore, the TFCE does not allow an interpretation of each time-point individually
either as it also summarizes statistics using the concept of clusters. It implies that a
significant time-point must be interpreted as a time-point being part of at least one
significant cluster (among all clusters formed using all thresholds), where a significant
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cluster contains at least one significant time-point.

1.5 Comparison of Packages, Parameters Choices and
Implementation Details

1.5.1 Comparison of Packages
Several packages for permutation tests are available for R in CRAN. Since permutation
tests have such a variety of applications, we only review packages (or the part of packages)
that handle regression, ANOVA or comparison of signals.

For testing one factor, the perm (Fay and Shaw, 2010), wPerm (Weiss, 2015) and
coin (Hothorn et al., 2008) packages produce permutation tests of differences of locations
between two or several groups. The latter can also test the difference within groups or
block, corresponding to a one within factor ANOVA.

The package lmPerm (Wheeler and Torchiano, 2016) produces tests for multifactorial
ANOVA and repeated measures ANOVA. It computes sequential (or Type I) and marginal
(or Type III) tests for factorial ANOVA and ANCOVA but only the sequential is imple-
mented for repeated measures, even when setting the parameter seqs = FALSE. The
order of the factors will therefore matter in this case. The permutation method consists
in permuting the raw data even in the presence of nuisance variables, which correspond to
the manly method, see Table 1.1. For repeated measures designs, data are first projected
into the "Error()" strata and then permuted, a method that has not been validated
(to our knowledge) in any peer-reviewed journal. Additionally, lmPerm by default uses a
stopping rule based on current p value to define the number of permutations. By default,
the permutations are not randomly sampled but modified sequentially merely on a single
pair of observations. This speeds up the code but the quality of the obtained p value is
not well documented.

The flip package (Finos et al., 2014) produces permutation and rotation tests
(Langsrud, 2005) for fixed effects and handles nuisance variables based on methods similar
to the huh juhn method of table 1.1. It performs tests in designs with random effects
only for singular models (e.g. repetition of measures by subjects in each condition) with
method based on Basso and Finos (2012) and Finos and Basso (2014) to handle nuisance
variables.

The GFD package (Friedrich, Sarah et al., 2017) produces marginal permutation tests
for pure factorial design (without covariates) with a Wald-type statistic. The permutation
method is manly. This method has been shown to be asymptotically exact even under
heteroscedastic conditions (Pauly et al., 2015).

To our knowledge, only the permuco package provides tests for comparison of signals.
The codes and outputs for packages that perform ANOVA/ANCOVA are given in

Appendix A.1.1 and in Appendix A.1.2 for repeated measures. For fixed effects, this
illustrates that permuco, flip and lmPerm handle covariates and are based on the same
statistic (F ) whereas GFD uses the Wald-type statistic. It also shows that flip is testing
one factor at a time (main effect of sex in this case) whereas the other packages produce
directly tests for all the effects. Also, the nuisance variables in flip must be carefully
implemented using the appropriate coding variables in case of factors. Note that lmPerm
centers the covariates using the default setting and that it provides both marginal (Type
III) or sequential (Type I) tests.
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Concerning permutation methods, only the manly method is used for both lmPerm
and GFD, the flip package uses the huh jhun method, whereas multiple methods can be
set by users using the permuco package. Note also that different default choices for the
V matrix as implemented in flip (based on eigendecomposition) and permuco (based
on QR decomposition) packages lead to slightly different results (see Table 1.1 for more
information on the permutation methods).

Finally, concerning repeated measures designs, flip cannot handle cases where mea-
sures are not repeated in each condition for each subject, and therefore cannot be com-
pared in Appendix A.1.2. As already said, lmPerm produces sequential tests in repeated
measures designs and permuco produces marginal tests. This explains why, with unbal-
anced data, only the last interaction term in each strata produces the same statistic.

1.5.2 Permutation Methods
For the fixed effects model, simulations (Kherad Pajouh and Renaud, 2010; Winkler et al.,
2014) show that the method freedman lane, dekker, huh jhun and terBraak perform
well, whereas manly, draper stoneman and kennedy can be either liberal or conser-
vative. Moreover Kherad Pajouh and Renaud (2010) provide a proof for an exact test
of the huh jhun method under sphericity. Note that huh jhun will reduce the dimen-
sionality of the data and if n− (p− q) ≤ 7 the number of permutations may be too low.
Based on all the above literature the default method for the permuco package is set to
freedman lane.

For the random effects model, Kherad-Pajouh and Renaud (2015) show that a more
secure approach is to choose the Rde keradPajouh renaud method.

All n! permutations are not feasible already for moderate sized datasets. A large
subset of permutation is used instead, and it can be tuned with the np argument. The
default value is np = 5000. Winkler et al. (2016) recall that with np = 5000 the 0.95%
confidence interval around p = 0.05 is relatively small: [0.0443; 0.0564]. For replicability
purpose, the P argument can be used instead of the np argument. The P argument
needs a Pmat object which stores all permutations. For small datasets, if the np argument
is greater than the number of possible permutations (n!), the tests will be done on all
permutations. This can be also be selected manually by setting type = "unique" in the
Pmat functions.

Given the inequality sign in the formulas for the p value described at the end of
section 1.2.2, the minimal p value is 1/ np, which is a good practice for permutation tests.
Moreover this implies that the sum of the two one-sided p values is slightly greater than
1.

The huh jhun method is based on a random rotation that can be set by a random
n×n matrix in the rnd rotation argument. This random matrix will be orthogonalized
by a QR decomposition to produce the proper rotation. Note that the random rotation
in the huh jhun method allows us to test the intercept, which is not available for the
other methods.

1.5.3 Multiple Comparisons
The multcomp argument can be set to "bonferroni" for the Bonferroni correction
(Dunn, 1958), to "holm" for the Holm correction (Holm, 1979), to "troendle", see
chapter 1.4.2, to "clustermass", see chapter 1.4.3 and to "tfce", see chapter 1.4.4.
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Moreover, to control the false discovery rate using the method proposed by Benjamini
and Hochberg (1995), the multcomp argument can be set to "benjamini hochberg".
Note that in the permuco package, these 6 methods are available in conjunction with
permutation, although the first 3 methods are general procedures that could also be used
in a parametric setting.

For the "clustermass" method, the threshold parameter of the cluster-mass statis-
tic is usually chosen by default at the 0.95 quantile of the corresponding univariate para-
metric distribution; but the FWER is preserved for any a priori value of the threshold
that the user may set. The mass function is specified by the aggr FUN argument. It is
set by default to the sum of squares for a t statistic and the sum for an F . It should be a
function that returns a positive scalar which will be large for an uncommon event under
the null hypothesis (e.g., use the sum of absolute value of t statistics instead of the sum).
It can be tuned depending on the expected signal. For the t statistic, typically, the sum of
squares will detect more efficiently high peaks and the sum of absolute values will detect
more efficiently wider clusters.

For the "tfce" method, the default value for the extend parameter is E = 0.5 and
for the height H = 2 for t tests and, for F test, it is E = 0.5 and H = 1 following
the recommendations of Smith and Nichols (2009) and Pernet et al. (2015). The ndh
parameter controls the number of steps used in the approximation of the integral in (1.13)
and is set to 500 by default.

The argument return distribution is set by default to FALSE but can be set to
TRUE to return the large matrices (nP × k) with the value of the permuted statistics.

The algorithm and formula presented in the previous sections may not be efficient
for very large size of data. When available, they are implemented in a more efficient
way in permuco. For example, to reduce the computing time, the permuted statistics are
computed through a QR decomposition using the qr, qr.fitted, qr.resid or qr.coef
functions.

1.6 Tutorial
To load the permuco package:

R> install.packages("permuco")
R> library("permuco")

1.6.1 Fixed Effects Model
The emergencycost dataset contains information from 176 patients from an emergency
service (Heritier et al., 2009). The variables are the sex, the age (in years), the type
of insurance (private/semiprivate or public), the length of the stay ( LOS) and the cost.
These observational data allow us to test which variables influence the cost of the stay of
the patients. In this example, we will investigate the effect of the sex and of the type of
insurance on the cost and we will adjust those effects by the length of the stay. To this
end, we perform an ANCOVA and need to center the covariate.

R> emergencycost$LOSc <- scale(emergencycost$LOS, scale = F)

The permutation tests are obtained with the aovperm function. The np argument
sets the number of permutations. We choose to set a high number of permutations ( np
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= 100000) to reduce the variablity of the permutation p values so that they can safely
be compared to the parametric ones. The aovperm function automatically converts the
coding of factors with the contr.sum which allows us to test the main effects of factors
and their interactions.

R> mod_cost_0 <- aovperm(cost ˜ LOSc * sex * insurance, data = emergencycost,
R> np = 100000)
R> mod_cost_0

Anova Table
Permutation test using freedman_lane to handle nuisance variables and
1e+05 permutations.

SS df F parametric P(>F)
LOSc 2.162e+09 1 483.4422 0.0000
sex 1.463e+07 1 3.2714 0.0723
insurance 6.184e+05 1 0.1383 0.7105
LOSc:sex 8.241e+06 1 1.8427 0.1765
LOSc:insurance 2.911e+07 1 6.5084 0.0116
sex:insurance 1.239e+05 1 0.0277 0.8680
LOSc:sex:insurance 1.346e+07 1 3.0091 0.0846
Residuals 7.514e+08 168

permutation P(>F)
LOSc 0.0000
sex 0.0763
insurance 0.6794
LOSc:sex 0.1576
LOSc:insurance 0.0233
sex:insurance 0.8537
LOSc:sex:insurance 0.0847
Residuals

The interaction LOSc:insurance is significant both using the parametric p value 0.0116
and the permutation one 0.0233 using a 5% level. However, the difference between these
2 p values is 0.0117 which is high enough to lead to different conclusions e.g., in case of
correction for multiple tests or a smaller α level.

If we are interested in the difference between the groups for a high value of the covari-
ate, we center the covariate to the third quantile (14 days) and re-run the analysis.

R> emergencycost$LOS14 <- emergencycost$LOS - 14
R> mod_cost_14 <- aovperm(cost ˜ LOS14 * sex * insurance, data = emergencycost,
R> np = 100000)
R>
R> mod_cost_14

Anova Table
Permutation test using freedman_lane to handle nuisance variables and
1e+05 permutations.
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SS df F parametric P(>F)
LOS14 2.162e+09 1 483.4422 0.0000
sex 2.760e+07 1 6.1703 0.0140
insurance 9.864e+05 1 0.2206 0.6392
LOS14:sex 8.241e+06 1 1.8427 0.1765
LOS14:insurance 2.911e+07 1 6.5084 0.0116
sex:insurance 7.722e+05 1 0.1727 0.6783
LOS14:sex:insurance 1.346e+07 1 3.0091 0.0846
Residuals 7.514e+08 168

permutation P(>F)
LOS14 0.0000
sex 0.0224
insurance 0.6082
LOS14:sex 0.1576
LOS14:insurance 0.0233
sex:insurance 0.6540
LOS14:sex:insurance 0.0847
Residuals

For a long length of stay, the effect of sex is significant using the parametric p value p
= 0.014 and the permutation one p = 0.0224.

If the researcher has an a priori oriented alternative hypothesis HA : βsex=M > βsex=F ,
the lmperm function produces one-sided t tests. To run the same models as previously,
we first need to set the coding of the factors with the contr.sum function before running
the permutation tests.

R> contrasts(emergencycost$insurance) <- contr.sum
R> contrasts(emergencycost$insurance)

[,1]
public 1
semi_private -1

R> contrasts(emergencycost$sex) <- contr.sum
R> contrasts(emergencycost$sex)

[,1]
F 1
M -1

R> modlm_cost_14 <- lmperm(cost ˜ LOS14 * sex * insurance,
R> data = emergencycost, np = 100000)
R>
R> modlm_cost_14

Table of marginal t-test of the betas
Permutation test using freedman_lane to handle nuisance variables and
100000 permutations.
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Estimate Std. Error t value parametric Pr(>|t|)
(Intercept) 14217.0 360.17 39.4730 0.0000
LOS14 845.5 38.45 21.9873 0.0000
sex1 -894.7 360.17 -2.4840 0.0140
insurance1 169.1 360.17 0.4696 0.6392
LOS14:sex1 -52.2 38.45 -1.3575 0.1765
LOS14:insurance1 98.1 38.45 2.5512 0.0116
sex1:insurance1 -149.7 360.17 -0.4155 0.6783
LOS14:sex1:insurance1 -66.7 38.45 -1.7347 0.0846

permutation Pr(<t) permutation Pr(>t)
(Intercept)
LOS14 1.0000 0.0000
sex1 0.0152 0.9848
insurance1 0.6823 0.3177
LOS14:sex1 0.0796 0.9204
LOS14:insurance1 0.9868 0.0132
sex1:insurance1 0.3337 0.6663
LOS14:sex1:insurance1 0.0395 0.9605

permutation Pr(>|t|)
(Intercept)
LOS14 0.0000
sex1 0.0224
insurance1 0.6082
LOS14:sex1 0.1576
LOS14:insurance1 0.0233
sex1:insurance1 0.6540
LOS14:sex1:insurance1 0.0847

The effect sex1 is significant for both the parametric one-sided p value p = 0.007 and
the permutation one-sided p value p = 0.0152. It indicates that when the length of the
stay is high, men have a shorter cost than women.

To test the effect of the sex within the public insured persons (called simple effect),
we change the coding of the factors inside the data.frame using the contr.treatment
function and disable the automatic recoding using the argument coding sum = FALSE.

R> contrasts(emergencycost$insurance) <- contr.treatment
R> emergencycost$insurance <- relevel(emergencycost$insurance, ref = "public")
R> contrasts(emergencycost$insurance)

semi_private
public 0
semi_private 1

R> contrasts(emergencycost$sex) <- contr.sum
R> contrasts(emergencycost$sex)

[,1]
F 1
M -1
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R> mod_cost_se <- aovperm(cost ˜ LOSc * sex * insurance, data = emergencycost,
R> np = 100000, coding_sum = FALSE)
R> mod_cost_se

Anova Table
Permutation test using freedman_lane to handle nuisance variables and
1e+05 permutations.

SS df F parametric P(>F)
LOSc 9.512e+09 1 2126.7539 0.0000
sex 6.092e+07 1 13.6210 0.0003
insurance 6.184e+05 1 0.1383 0.7105
LOSc:sex 1.510e+08 1 33.7708 0.0000
LOSc:insurance 2.911e+07 1 6.5084 0.0116
sex:insurance 1.239e+05 1 0.0277 0.8680
LOSc:sex:insurance 1.346e+07 1 3.0091 0.0846
Residuals 7.514e+08 168

permutation P(>F)
LOSc 0.0000
sex 0.0004
insurance 0.6794
LOSc:sex 0.0000
LOSc:insurance 0.0233
sex:insurance 0.8537
LOSc:sex:insurance 0.0847
Residuals

The sex row can be interpreted as the effect of sex for the public insured persons for
an average length of stay. Both the parametric p = 0.0003 and permutation p value p =
0.0004 show significant effect of sex within the public insured persons.

Given the skewness of the data for each case where the permutation test differs from
the parametric result, we tend to put more faith on the permutation result since it does
not rely on assumption of normality.

1.6.2 Repeated Measures ANCOVA
The jpah2016 dataset contains a subset of a control trial in impulsive approach ten-
dencies toward physical activity or sedentary behaviors. It contains several predictors
like the body mass index, the age, the sex, and the experimental conditions. For the
latter, the subjects were asked to perform different tasks: to approach physical activity
and avoid sedentary behavior ( ApSB AvPA), to approach sedentary behavior and avoid
physical activity ( ApPA AvSB) and a control task. The dependent variables are measures
of impulsive approach toward physical activity ( iapa) or sedentary behavior ( iasb). See
Cheval et al. (2016) for details on the experiment. We will analyze here only a part of
the data.

R> jpah2016$bmic <- scale(jpah2016$bmi, scale = F)

We perform the permutation tests by running the aovperm function. The within
subject factors should be written using + Error(...) similarly to the aov function
from the stats package:
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R> mod_jpah2016 <- aovperm(iapa ˜ bmic * condition * time + Error(id/(time)),
R> data = jpah2016, method = "Rd_kheradPajouh_renaud")

The results are shown in an ANOVA table by printing the object:

R> mod_jpah2016

Permutation test using Rd_kheradPajouh_renaud to handle nuisance
variables and 5000 permutations.

SSn dfn SSd dfd MSEn MSEd
bmic 18.6817 1 106883.5 13 18.6817 8221.808
condition 27878.1976 2 106883.5 13 13939.0988 8221.808
bmic:condition 89238.4780 2 106883.5 13 44619.2390 8221.808
time 268.8368 1 167304.9 13 268.8368 12869.607
bmic:time 366.4888 1 167304.9 13 366.4888 12869.607
condition:time 21159.7735 2 167304.9 13 10579.8867 12869.607
bmic:condition:time 29145.7201 2 167304.9 13 14572.8601 12869.607

F parametric P(>F) permutation P(>F)
bmic 0.0023 0.9627 0.9646
condition 1.6954 0.2217 0.2180
bmic:condition 5.4269 0.0193 0.0230
time 0.0209 0.8873 0.8808
bmic:time 0.0285 0.8686 0.8594
condition:time 0.8221 0.4611 0.4520
bmic:condition:time 1.1323 0.3521 0.3412

This analysis reveals a significant p value for the effect of the interaction bmic:condition
with a statistic F = 5.4269 , which lead to a permutation p value p = 0.023 not far from the
parametric one. For this example, the permutation tests backs the parametric analysis.
The permutation distributions can be viewed using the plot function like in Figure 1.3.

R> plot(mod_jpah2016, effect = c("bmic", "condition", "bmic:condition"))

1.6.3 EEG Experiment in Attention Shifting
attentionshifting signal and attentionshifting design are data provided in the
permuco package. They come from an EEG recording of 15 participants watching images
of either neutral or angry faces (Tipura et al., 2017). Those faces were shown at a different
visibility: subliminal ( 16ms) and supraliminal ( 166ms) and were displayed to the left
or to the right of a screen. The recording is at 1024Hz for 800ms. Time 0 is when
the image appears (event-related potential or ERP). The attentionshifting signal
dataset contains the ERP of the electrode O1. The design of experiment is given in the
attentionshifting design dataset along with the laterality, sex, age, and 2 measures
of anxiety of each subjects, see Table 1.3.

As almost any ERP experiment, the data is designed for a repeated measures ANOVA.
Using the permuco package, we test each time points of the ERP for the main effects and
the interactions of the variables visibility, emotion and direction while controlling
for the FWER. We perform F tests using a threshold at the 95% quantile, the sum as
a cluster-mass statistics and 5000 permutations. We handle nuisance variables with the
method Rd kheradPajouh renaud:
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Figure 1.3: The permutation distributions of the F statistics for the effects bmic,
condition and bmic:condition. The vertical lines indicate the observed statistics.

Table 1.3: Variables in the attentionshifting design dataset.
Variable name Description Levels
id number of identification 15 subjects
visibility time that the image is shown 16ms 166ms
emotion emotion of the shown faces angry, neutral
direction position of the faces on the screen left, right
laterality id measure of the laterality of the subjects scale from 25 to 100
age age of the subjects from 18 to 25
sex sex of the subjects male, female
STAIS state state anxiety score of the subjects
STAIS trait trait anxiety score of the subjects

R> electrod_O1 <-
R> clusterlm(attentionshifting_signal ˜ visibility * emotion * direction
R> + Error(id/(visibility * emotion * direction)),
R> data = attentionshifting_design)

The plot method produced a graphical representation of the tests that allows us to
see quickly the significant time frames corrected by clustermass. The results are shown
in Figure 1.4.

R> plot(electrod_O1)

Only one significant result appears for the main effect of visibility. This effect is
corrected using the clustermass method. Printing the clusterlm object gives more
information about all clusters for the main effect of visibility, whether they are driving
the significant effect or not:

R> print(electrod_O1, effect = "visibility")

Cluster fisher test using Rd_kheradPajouh_renaud to handle nuisance variables
with 5000 permutations and the sum as mass function.
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fisher statistic : clustermass correction

Figure 1.4: The plot method on a clusterlm object displays the observed statistics
of the three main effects and their interactions. The dotted horizontal line represents the
threshold which is set by default to the 95% percentile of the statistic. For this dataset,
using the clustermass, one cluster drives the significant difference for the main effect of
visibility as displayed in red. The print method gives more details.

Alternative Hypothesis : two.sided.

visibility, threshold = 4.60011.
start end cluster mass P(>mass)

1 142 142 4.634852 0.5048
2 332 462 3559.149739 0.0018
3 499 514 85.019645 0.4060
4 596 632 234.877913 0.2290
5 711 738 191.576178 0.2680

There is a significant difference between the two levels of visibility. This difference is
driven by one cluster that appears between the measures 332 and 462 which correspond
to the 123.7ms and 250.9ms after the event. Its cluster-mass statistic is 3559.1 with an
associated p value of 0.0018. The threshold is set to 4.60011 which is the 95% percentile
of the F statistic. If we want to use other multiple comparisons procedures, we use the
multcomp argument:

R> full_electrod_O1 <-
R> clusterlm(attentionshifting_signal ˜ visibility * emotion * direction
R> + Error(id/(visibility * emotion * direction)),
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fisher statistic : tfce correction

Figure 1.5: Setting the multcomp argument to "tfce" in the plot function will display
the TFCE p values. The argument enhanced stat = TRUE shows the TFCE statistics
us of Equation 1.13.

R> data = attentionshifting_design, P = electrod_O1[["P"]]
R> method = "Rde_kheradPajouh_renaud",
R> multcomp = c("troendle", "tfce", "clustermass",
R> "bonferroni", "holm", "benjaminin_hochberg"))

Note that we retrieve the very same permutations as previous model by using the P
argument. The computation time for those tests is reasonably low: it takes less than
12 minutes on a desktop computer (i7 3770CPU 3.4GHz, 8Go RAM) to compute the 7
permutation tests with all the multiple comparisons procedures available. To see quickly
the results of the threshold-free cluster-enhancement procedure, we set the multcomp
argument of plot to "tfce" as shown in Figure 1.5.

R> plot(full_electrod_O1, multcomp = "tfce", enhanced_stat = TRUE)

The TFCE procedure gets approximately a similar effect. However the time-points
around 400 (190 ms) are not part of the significant effect. If the curves in the TFCE
plot happen to show some small steps (which is not the case in Figure 1.5) it may be
because of a too small number of terms in the approximation of the integral of the tfce
statistics of Equation 1.13. In that case it would be reasonable to increase the value of
the parameter ndh.

Finally, to be able to interpret individually each time-point, we can use the troendle
multiple comparisons procedure whose results are visualized by plotting the full electrod O1
object. A similar period is significant for the main effect of visibility.
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fisher statistic : troendle correction

Figure 1.6: Setting the multcomp to "troendle" will display the troendle correction
which allows an interpretation of each time-point individually.

R> plot(full_electrod_O1, multcomp = "troendle")

To interpret individually each time-point in Figure 1.6, we extract the significant time-
points (with an α level of 5%) using the summary method, setting the multcomp parameter
to "troendle". We find that the main effect of visibility begin at 130.6 ms after the
event. However, the significant time-points for the interaction visibility:emotion are
between 100.2 ms and 96.3 ms before the event, which are obviously type I errors.

R> tro_sum <- summary(full_electrod_O1, multcomp = "troendle")
R>
R> tro_visi_sign <- tro_sum[tro_sum[,"visibility pvalue"] < 0.05,
R> "visibility pvalue"]
R>
R> tro_visem_sign <- tro_sum[tro_sum[,"visibility:emotion pvalue"] < 0.05,
R> "visibility:emotion pvalue"]

R> tro_visi_sign[1:7]

130.6 131.5 132.5 133.5 134.5 135.5 136.4
0.0362 0.0274 0.0118 0.0068 0.0068 0.0068 0.0068

R> tro_visem_sign

-100.2 -99.3 -98.3 -97.3 -96.3
0.0448 0.0306 0.0306 0.0306 0.0408
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1.7 Conclusion
This article presents recent methodological advances in permutations tests and their im-
plementation in the permuco package. Hypotheses in linear models framework or re-
peated measures ANOVA are tested using several methods to handle nuisance variables.
Moreover permutations tests can solve the multiple comparisons problem and control the
FWER trough cluster-mass tests or TFCE, and the clusterlm function implements those
procedures for the analysis of signals, like EEG data. Section 1.6 illustrates some real
data example of tests that can be performed for regression, repeated measures ANCOVA
and ERP signals comparison.

We hope that further developments of permuco expand cluster-mass tests to multi-
dimensional adjacency (space and time) to handle full scalp ERP tests that control the
FWER over all electrodes. Another evolution will concern permutation procedures for
mixed effects models to allows researchers to perform tests in models containing partici-
pants and stimuli specific random effects.
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Chapter 2

Complements to the permuco
Package and Permutation Methods

Chapter 2 presents complements closely related to the content of Chapter 1. Section 2.1
describes the geometry of the permutation methods. Section 2.2 explores a full-scalp EEG
data analysis and presents functions that will be added to permuco in the next release.
Finally, in Section 2.3, we present a new and more powerful approach of the cluster-mass
tests using the slopes of the signals.

2.1 Geometrical Interpretation of Permutation Meth-
ods

Kherad Pajouh and Renaud (2010) show that permutation methods have a geometrical
interpretation. In the following Section, we recall and extend these interpretations to
several methods using three-dimensional representations (Soetaert, 2017). Kherad Pa-
jouh and Renaud (2010) produce a graphical representation showing the link between the
kennedy and the huh jhun methods. Here, we show individual plots for the manly,
kennedy, freedman lane and huh jhun permutation methods. Moreover, this repre-
sentations inspired us a new transformation of the data that produces the exact same
permuted F statistics than the freedman lane permutation method. We show graphi-
cally that the similarity between the two transformations are based on the properties of
orthogonal projections in the F statistic. Hence, this new transformation may be different
than freedman lane using other statistics.

In a regression or ANOVA model as described by Equation 1.1, the space of the
geometry is Rn, and all variables, including the response y, the nuisance variables D and
the variables of interest X, are set of column-vectors that lie in Rn. Moreover, the design[
D X

]
is a set of column-vectors that spans a subspace of Rn.

Evaluating ŷ = Dη̂+Xβ̂ for all possible values β̂ and η̂ spans a p-dimensional subspace
of Rn. In Figure 2.1, y, is represented by the red vector, X and D are represented by
black vectors and all possible candidates for ŷ lie on the grey grid. Performing ordinary
least squares (OLS) is finding the estimates β̂ and η̂ (light blue construction in Figure 2.1)
such that they minimize the sum of squares of the residuals ε̂ (green vector in Figure 2.1).
Moreover, the residuals are computed by the difference between y and ŷ and their sum of
squares is simply the square of the Euclidean distance between y and ŷ. In that geometry,
the regression, by minimizing the sum of squares of the residuals, finds ŷ such as the closest
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Figure 2.1: Geometry of the regression. The OLS projects y into the span of [D X].

point of y in the span of [D X]. This point is unique and corresponds to the orthogonal
projection of y into [D X]. Geometrically, all points with an equal Euclidean distance to
y span a hypersphere centred in y and its square radius corresponds to the residuals sum
of squares. In other words, OLS ”constructs” the hypersphere of minimal radius that is
tangent to the subspace spanned by [D X], and this touching point is precisely ŷ.

Finally, the F statistic also has a geometrical interpretation as both the numerator
and denominator correspond to squared lengths of vectors. Using the properties of the
projection matrices, we find that the denominator corresponds to the squared norm of
the residuals y>RD,Xy = (RD,Xy)>RD,Xy = ||RD,Xy||2 (green line in Figure 2.1). In
addition, the numerator corresponds to the squared norm of the difference between the
fitted values of the ”full” model (using the full design [D X]) and of the ”small” model
(using only D in the design) y>HDy − y>HD,Xy = y>HRDXy = ||HRDXy||2 (deep blue
line in Figure 2.1). These two vectors create a right-angled triangle. The F statistic is a
function of an angle (black angle pointing HDy in Figure 2.1) of this right-angled triangle
as F = n−p

p−q (tan (∠(y −HDy, RD,Xy −HDy)))−2, where tan is the tangent trigonometri-
cal function and ∠(·) denotes the angle between two vectors, here the vectors y − HDy
and HD,Xy −HDy.

In this space, the permutation methods transform variables while using the same
statistic. Representing the design, the response variable and their transformation as
vectors in a 3D space gives some insight of the effect of the permutation methods.

Note that this graphical representation is in a 3D space which implies some simplifica-
tions. First, the design D and X are both set of vectors in usual regression models but are
graphically represented using only one dimension (one vector). Moreover, the part of the
design coding the intercept is the vector 1 which is singular when using permutation as
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P1 = 1 ∀ P . Hence, the intercept is literally central in permutation as H1y = H1Py ∀ P
which implies that permutations are interpreted as rotations ”around” 1. In a 3D space,
both the intercept and other nuisance variables cannot be represented simultaneously as
D should be a one-dimensional object and 1 ∈ D.

2.1.1 Permutation Methods in the 3D Space
Figure 2.2 represents the manly permutation method which is the transformation: {y,D,X} →
{Py,D,X}. This permutation method does not consider the effect of D and the re-
sampled datasets (red stars) and their corresponding fitted values (red dots) are widespread
over the D axis. If the effect of the Dη is not null, a permutation method that takes fully
into account the effect of the nuisance variables should have permuted samples that project
into the true value of Dη (or at least close to it).

Figure 2.3 shows the kennedy permutation method which is the transformation:
{y,D,X} → {PRDy,−, RDX}. It projects everything into the subspace orthogonal to D
using the transformation RD. Since, the vectors that generate the F statistic are merely
translated, their norms and therefore the F value are unchanged. However, after the
permutations, the vectors PRDy do not stay into such a space orthogonal to D and the
residuals of the permuted datasets (orange vectors) get longer than expected in a case
with nuisance variables. The denominators of the permuted F statistics increase which
decrease the values of the permuted F statistics. This results to smaller p-values. We
investigate analytically this effect and propose a correction in Section 3.3.

Figure 2.5 shows the freedman lane permutation method which is the transformation:
{y,D,X} → {(HD + PRD)y,D,X}. This method only permutes the residuals of the
”small” model (which is the model using only the nuisance variables) and add them to
the non-permuted fitted values of the same model. The permuted responses are the one
computed by the kennedy method and shifted by HDy. Doing so, the numerator is
similar to the kennedy method for each permutation. However, because the permuted
data are projected into a larger subspace (

[
D X

]
), the residuals do not increase as

much as in the kennedy method. The very same permuted statistics would be produced
by adding a new step to the kennedy method by pre-multiplying by RD after permuting
or equivalently: {y,D,X} → {RDPRDy,−, RDX}. This transformation does not change
the numerator of the F statistic for each permutation in comparison to the kennedy
or freedman lane methods. However, it reduces the residuals sum of squares of the
denominator of the kennedy method as RDPRDy lies in a subspace orthogonal to D.
Because the distance between PRDy and [D X] is equal to the distance between RDPRDy
and RDX, the permuted F statistics using the freedman lane method are identical to
the one computed using the transformation {y,D,X} → {RDPRDy,−, RDX}.

Figure 2.4 shows the huh jhun method which is the transformation: {y,D,X} →
{PV >RDy,−, V >RDX}. As the kennedy method, it first projects everything into the
subspace orthogonal to D. Then, it defines an orthonormal basis in this subspace be-
fore performing the permutations (purple arrows in Figure 2.4). Hence, the permuted
responses are limited inside that subspace and the permuted residuals does not increase
as much as the kennedy method. The new basis is chosen randomly. A random basis
implies a random position of the ”intercept” vector 1. Because the effect of permutation
depends on the spatial position of 1, it follows that each set of permuted data (and per-
muted statistic) changes according to the selected basis. As mentioned by Kherad Pajouh
and Renaud (2010), choosing a random basis has the effect to almost orthogonalize the
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Figure 2.2: Geometry of the manly permutation method. It permutes the full vector y
represented by the solid red line. This permutation method does not reduce the effect of
D before permuting the data.

vectors V >RDy and V >RDX to the intercept with a high probability. Moreover, be-
cause the size of the space gets smaller (n→ n− rank(D)), the number of permutations
decreases (n!→ (n− rank(D))!).
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Figure 2.4: Geometry of the huh jhun permutation method. The first step of the
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2.1.2 Note on the dekker and terBraak Permutation Methods
The dekker permutation method is the following transformation of the data: {y,D,X} →
{y,D, PRDX}. It permutes only the design and a 3D visualization may not be helpful to
understand its effects. However, it works by first orthogonalizing the variables of interest
X to the nuisance variables D and then permuting the orthogonalized variables of inter-
est. Using the QR decomposition of the full design, the very same permuted F statistics
are obtained with the transformation: {y,D,X} → {y,Q[D,X]:1...q, PQ[D,X]:q+1...p}, where
Q[D,X] is an orthonormal basis of [D X] computed by QR decomposition, Q[D,X]:1...q is a
set of orthonormal vectors spanning D and Q[D,X]:q+1...p is a set of orthonormal vectors
spanning RDX (see Section 3.4.1 for more details). Permuting Q[D,X]:q+1...p or RDX is
identical when computing the F statistic as it is based on projection into that space, which
are independent on the bases of the space. Moreover, permuting different basis that spans
the same space creates new set of vectors that span the same space: if two basis M and N
span the same space, they both create the same projection matrix HM = HN and, for each
permutation matrix P , we have HPM = PHMP

> = PHNP
> = HPN . This means that

permuting RDX spans the same space than permuting Q[D,X]:q+1...p for all permutations.
The dekker permutation method is computationally intensive as its needs to compute a
QR decomposition for each permutation and this second approach may reduce its com-
puting time. Hence, a clever implementation that re-uses the set of vectors Q[D,X]:1...q for
each permutation when computing the QR-decomposition may save computing time.

The terBraak permutation method is the following transformation of the data:
{y,D,X} → {(HD,X + PRD,X)y,D,X}. However, as explained in Section 1.2.2, for
each permutation, we compute the statistic under a different null hypothesis, H0 : β = b,
where b =

(
X>RDX

)−1
X>RDy which corresponds to the parameter evaluated on the

observed values. To consider this change of null hypothesis in the model, we change the
model to test H0 : β′ = 0 such that:

y = Xβ +Dη + ε (2.1)
y = X(β′ + b) +Dη + ε

y −Xb = Xβ′ +Dη + ε.

Then, the terBraak permutation method is identical to the transformation {y,D,X} →
{(HD,X−X(X>RDX)−1X>RD +PRD,X)y,D,X} without the change of null hypothesis.
Note that, this transformation modifies the data such that when P = I the statistic is 0
and the original dataset (e.g. before applying the terBraak transformation) should be
used to compute the test statistics.

2.2 Full Scalp Data Analysis
Section 2.2 describes my involvement in the analysis of the EEG data of the experiment
of Cheval et al. (2018). It reports some of the practical challenges we encountered during
the analysis and the solutions we brought.

In Appendix B, we provide R code to download the EEG data from the Zenodo
repository and to reproduce the analysis and tests of Cheval et al. (2018). The main
functions are compiled in the clustergraph package (https://github.com/jaromilfrossard/
clustergraph) that I have written and will be added to the permuco package once a set of
user-friendly EEG data importation and manipulation functions are designed.

https://github.com/jaromilfrossard/clustergraph
https://github.com/jaromilfrossard/clustergraph
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2.2.1 Experimental design
The goal of the experiment in Cheval et al. (2018) is to understand if humans are naturally
attracted to physical activity. The approach-avoidance framework and the manikin task
(Mogg et al., 2003; Krieglmeyer and Deutsch, 2010) is implemented to test this hypothesis.
In that framework, the participants of the experiment must perform a task when seeing
stimuli. The experimenter asks them to move a virtual manikin either in the direction of
the stimuli (approach) or in the opposite direction (avoid). If participants are attracted
to the stimuli, it is hypothesised that they show, on average, a faster reaction time when
approaching rather than avoiding the stimuli. Furthermore, the tendency inverses if they
are repulsed by the stimuli.

For the experiment of Cheval et al. (2018), experimenters show images describing
physical activity (PA), sedentary behaviour (SED) as well as neutral images (neutral).
Moreover, the tasks of the participants are either to approach (Approach) or to avoid
(Avoidance) the stimuli. Furthermore, some features of the participants are recorded like
a measure of the usual physical activity of the participants which is used to adjust the
observed effects. The EEG signal is recorded on the full scalp using a 64 electrodes cap
during over a second for each trial. In addition, 800ms after the event, the participants
begin to engage in their movements which may disrupt the EEG recording. Hence, we
only perform the test during the period from 0 to 800ms after the event.

The goal of the analysis of the ERP is to detect if the design influences the average
ERP, where it might occur (which electrodes) and at which time (after showing the
stimuli). Without any prior information on the part of the brain and on the time of the
potential effect, the solution is to test for each time point at each electrode and to use a
powerful multiple comparisons procedure. The main hypothesis of the psychologists lies
in the interaction between the type of stimuli and the task. They postulate that, relative
to neutral condition, the effect of the type of stimuli (PA and SED) is different depending
on the type of task (approaching or avoiding).

It is a typical experimental design in psychology where participants must react to
stimuli. This type of design should be analysed using a cross-random effects mixed-effects
model (CRE-MEM). However, for this analysis, we face many challenges and choose a
repeated measures ANCOVA model and test. For the analysis of ERP, we must perform
more than thousands of tests and then use a multiple comparisons procedure. Scaling
CRE-MEM to this size creates both statistical and computational problems. First, we
must select the appropriate correlation structure of the data for all the tests. Using
the same correlation structure would produce many convergence errors and adapting it
for each test would cause problems when interpreting the results. Moreover, no multiple
comparisons procedure is available and powerful enough for CRE-MEM. Finally, the opti-
mization is computationally intensive and difficult to scale at this number of tests. Hence,
we choose to average the signals over the stimuli which amounts to treating them as fixed
effects. In order to interpret the results relatively to the neutral stimuli, we transformed
the observed signals by taking the difference between the signals in the physical activity
(PA) and neutral conditions, and sedentary behaviour (SED) and neutral conditions, sig-
nal for each participant. We use these differences of signals as response and perform one
test at each time, each electrode.

Each test is a repeated measures ANCOVA, with two factors (task and type of stim-
uli) and one covariate which is a self-reported measure of moderate-to-vigorous physical
activity (MVPA). In order to decompose the interaction effect, we perform two addi-
tional simple effects tests. The first one corresponds to the effect of stimuli within the
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Figure 2.7: Graph of adjacency of the electrodes. On the left panel, the graph defines the
spatial adjacency between electrodes. On the right panel, the spatial graph is reproduced
for each time point (here only 3) and bind together according to the electrode defining
the spatiotemporal adjacency of the cluster-mass test.

”Approach” level of the task only, and the second one the effect of stimuli within the
”Avoidance” level only.

2.2.2 Implementing the cluster-mass test
The p-values are computed using a permutation test and the method proposed for rA-
NOVA by Kherad-Pajouh and Renaud (2015) to handle the nuisance variables. We use
the cluster-mass test to control the FWER which is powerful when the effects are adjacent
and is relatively fast to compute (in comparison to the TFCE).

In a full-scalp cluster-mass test, hypotheses are distributed on the space (the electrodes
on the scalp) and time. The cluster-mass test as implemented in the permuco package
only handle one electrode measured on multiple time-points; this means that clusters
are computed using only time adjacency. To consider spatiotemporal data, we must also
define the space adjacency. A connected graph (left panel of Figure 2.7) is the appropriate
object to represent the spatial adjacency: the electrodes are represented as the vertices
and the adjacency relationship between two electrodes by an edge. To control the FWER
in the cluster-mass test, the graph should be defined a priori. It may be defined using prior
information of the relationship between electrodes or between brain regions. Without any
prior information, the Euclidean distance between electrodes is used for the analysis by
Cheval et al. (2018). Two electrodes are declared adjacent if their Euclidean distance
is smaller than δ, which is the smallest distance that produces a connected graph1. In
Cheval et al. (2018), we found the value δ = 35mm which produces the spatial adjacency
defined by the graph in the left panel of Figure 2.7. To define spatiotemporal adjacency,

1A connected graph implies no disconnected sub-graph. Having sub-graphs implies that some tests
cannot, by design, be in the same cluster, which is not a useful assumption for this analysis.
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Figure 2.8: Effect of interaction between the task and the stimuli. The 18 figures on the
left represent the only significant cluster for selected time-points. The panel on the right
shows all clusters: the one in color is significant and the others are in grey. We first see
that the effect began around 100ms in the front electrodes and after 250ms the electrodes
of the left becomes also part the cluster. The effect ends between 375ms and 400ms.
Figure published in Cheval et al. (2018).

the spatial graph is then reproduced for each time-point with edges between all pairs of
two vertices (tests) associated to the same electrode when they are temporally adjacent.
In the right panel of Figure 2.7, a graph defines spatiotemporal adjacency for 64 electrodes
and 3 temporal measures. The full graph that defines the spatiotemporal adjacency has
then a total of vertices equal to the number of tests (#electrodes × #time). Note that,
in this structure, no difference exists between adjacency in time or space.

From a computational perspective, finding a cluster in this structure becomes simple as
we use all the tools developed for the analysis of graphs (Csardi and Nepusz, 2006). As a
reminder, a cluster is defined as a set of adjacent statistics that are above the predefined
threshold. After performing all tests, we map them on the spatiotemporal graph. We
then delete all the vertices which statistics are below the threshold. This produces a new
graph composed by multiple connected components. Then, each connected component
is interpreted as a spatiotemporal cluster. Finally, for each connected component, we
compute the cluster-mass statistic using the sum (or sum of squares) of statistics of that
particular connected component.

The cluster-mass null distribution is computed by permutations while maintaining spa-
tiotemporal correlations among tests. Permutations must be performed without changing
the position of electrodes nor mixing time-points. Concretely, after transforming the re-
sponses using the permutation method in Kherad-Pajouh and Renaud (2015), they are
sorted in a three-dimensional array. It has the design (participants × experimental con-
ditions) in the first dimension, time in the second one and electrodes in the third one.
Then, only the first dimension is permuted to create a re-sampled response (or 3D array).
Doing so, it does not reorder time-points, neither electrodes, therefore, the spatiotemporal
correlations are maintained within each permuted sample.
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2.2.3 Graphical representation
The representation of the results is multi-dimensional, because tests are spread in space
and time. Moreover, it is also useful to interpret different effects in the same time,
typically the simple effects and the interaction. In order to help readers to understand
this complexity, we produce different graphical representations.

First, we produce graphics where, for each effect, the tests for all electrodes and all
time points are represented in a two-dimensional image with the time in the X-axis and
electrodes in the Y-axis (right panel of Figure 2.8). Electrodes are sorted from the one
in the back (bottom Y) to the one in the front (top Y). The significant clusters are
represented in a colour-scale and the non-significant one in grey. The white pixels are
tests which statistic are below the threshold. The colour-scale represents the value of the
univariate statistics. This representation gives a good general idea of the size and timing
of the clusters but does not give a good understanding of its spatial position. Hence, we
add graphics where the electrodes are spatially represented using their (2-dimensional)
theoretical position, but only for some selected time-points.

Then, to be able to analyse in parallel all the effects, we can focus the graphical
representation on single electrodes. Some electrodes were selected as they seem central
and typical of the activated region. We represented the observed ERP (average for each
condition), the ERP relative to the neutral condition (actual means used for the test)
and a third visual representation indicating for the selected electrode all the effects and
when they are part of a significant cluster. Figure 2.9 shows this representation for the
electrode FCz.

2.3 Extending Cluster-Mass Test using the Slope of
Signals

This proposition has been presented as a poster at the congress of the International Society
of Non-Parametric Statistics (ISNPS) in 2018 in Salerno. It is mainly developed for tests
on a single electrode and multiple time measures.

2.3.1 Motivation Example
In ERP data, physiologically, one process can only happen on multiple adjacent time-
points and the cluster-mass test is powerful to detect it. It works by grouping these
adjacent time-point into one cluster. Then, it produces one common test statistic and
one common inference for all time-points in the cluster. Moreover, the common inference
for all time-points in the cluster is relevant because we assume that the full cluster is
created by the same underlying process. This procedure is powerful and controls the
family-wise error rate when the same process is composed of adjacent time-points but
loses power otherwise.

However, a true process in an ERP may happen with a positive difference between
conditions followed by a negative difference (or vice versa). Moreover, it may be relevant to
assume that these two separate differences are caused by the same underlying mechanism
to which the voltage is first higher in one condition, immediately followed by a time when
the voltage is lower. This type of processes is not well detected with the usual cluster-
mass test because the timing of the process is split into two smaller clusters. In addition,
the two clusters come from the same underlying mechanism and it would be relevant to
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Figure 2.9: All tested effects for the electrode FCz. The top panel shows the ERP in each
experimental condition. The middle panel shows the difference to the neutral condition
(the signals on which the tests are performed). The bottom panel shows which time-
points are in a significant cluster depending on the effect. Figure published in Cheval
et al. (2018).
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Figure 2.10: Cluster-mass test extended using the slopes. The top panel shows simulated
ERP in two experimental conditions. The second panel show the classical cluster-mass
test which detects only 2 smaller clusters. The third panel shows statistical signals on the
raw signals and on their slopes: when the tests on the raw signals are below the threshold,
the tests on their slopes become above the threshold and 3 clusters are bound together.
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bind them and to make common inference for these two segments. It would also result in
a more powerful test by combining their cluster-masses. For this purpose, we propose to
use the smoothed slope of the signals to bind this type of clusters together when relevant.

In brief, to have a positive difference followed by a negative difference, the slope of the
signals must become non-null and detecting an effect on the slopes is used to bind two
smaller clusters (see Figure 2.10). First, we compute the test statistics of the effect of
a factor on the raw signals and on their smoothed slopes which produces two statistical
signals. With these two statistical signals, we compute a cluster-mass test using the usual
adjacency based on time, but also adjacency based on the ”derivative”: for the same
time-point, the test on the raw signals is adjacent to the test on their slopes). Hence,
when the average effect is high, the statistics based on the raw signals is high and the
statistics computed on the slopes is close to 0 (see Figure 2.10, t ≈ 170 and t ≈ 320). In
the other hand, between a positive spike and negative spike on the statistical signal of the
raw data, the statistics computed on the smoothed slopes is high, and the one computed
on the raw signals is close to 0 (see Figure 2.10, t ≈ 220 and t ≈ 270). Finally, for the
negative spike, the statistic based on the raw signals is high again (in absolute value) (see
Figure 2.10, t ≈ 240). When using the slope, the full effect (from the positive spikes to
the negative spikes) is hence detected as part of one large cluster. The clusters computed
on the test statistics on the raw signals are bind by the clusters found for the tests on
their slopes which is located between the two alternating spikes.

2.3.2 Model and Hypothesis
Formally, we assume a regression model for the signals as in Equation 1.11 in continuous
time and we write it together with the corresponding model for their slopes:

ys = Dηs +Xβs + εs, (2.2)
ẏs = Dη̇s +Xβ̇s + ε̇s, (2.3)

where ẏs is the vector of the slopes of the signals at time s, η̇s = ∂ηs
∂s

is the derivative
effect of the nuisance variables, β̇s = ∂βs

∂s
is the derivative effect of the interest variables

and ε̇s is an error term. Note that the design matrices D and X are similar to the one
introduced in Equation 1.11 and correspond to the nuisance variables and the variables
of interest, respectively.

Physiologically, one can assume that null or alternative effects happen during intervals.
Then, for any open interval I, if βs = 0 ∀s ∈ I it implies that β̇s = 0 ∀s ∈ I. Hence,
the null hypothesis Hs

0 : βs = 0 implies the null hypothesis on the effect of the slopes,
Hs

0,∂ : β̇s = 0. As EEG data are always discrete the equivalent is to test simultaneously Hs
0

and Hs
0,∂ ∀s ∈ {1, . . . , k} using permutation tests; we might use the permutation methods

described in Table 1.1 in case of nuisance variables. Moreover, this procedure is similar
for a repeated measures ANOVA and a model for the slopes containing random effects
may be written following Equation 1.12.

2.3.3 Slope Estimation
When recording EEG, we only observe the raw signals and to use this new procedure the
slopes must be estimated. The time differences of the signals are too noisy to be used
as reliable slopes estimates and they first must be smoothed. Non-parametric estima-
tion like local polynomial (Fan and Gijbels, 1996) implemented in the locpol package
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(Cabrera, 2018) or smoothing splines (Green and Silverman, 1993) are used to produce
this estimate. However, both methods need to be tuned by one parameter which controls
the smoothness of the estimated curves. To produce two similar signals, we select the
smoothing parameter such that the raw signals and their smoothed slopes have approxi-
mately the same roughness κ. For a standardized signal Ys with s ∈ {1, . . . , k}, we define
its roughness as an estimation of the variability of its discrete second derivative. First,
we define ∆Ys = Ys+1 − Ys and ∆2Ys = ∆Ys+1 −∆Ys, and then we define the roughness
of a curve using:

κ(Ys) = 1
k − 3

k−2∑
s=1

(
∆2Ys − avgs

[
∆2Ys

])2
, (2.4)

where avgs [∆2Ys] = 1
k−2

∑k−2
s=1 ∆2Ys is the average of the second derivative of the signal.

Then, the response variables of the signal of the n observations for the k time-points
are written in a n× k matrix

[
y1 . . . ys . . . yk

]
=
[
y[1] . . . y[i] . . . y[n]

]>
such

that y[i] is the signal of the observation i. In other words, when storing the n signals
of length k in a large matrix of size n × k, ys corresponds to its sth column and y[i]
to its ith row. In the same way, we define the slope signals for all observations by[
ẏ1 . . . ẏs . . . ẏk

]
=
[
ẏ[1] . . . ẏ[i] . . . ẏ[n]

]>
. Then, for each i ∈ {1, . . . , n}

observation, the discrete signal is an observed vector y[i] of length k. However, ẏ[i] is
not directly observed but estimated with local polynomial or smoothing splines using y[i].
The smoothing parameter is set for all n signals such that: 1

n

∑n
i=1 κ(y[i]) = 1

n

∑n
i=1 κ(ẏ[i]).

Hence, the average roughness of the raw signals y[i] is equal to the average roughness of
their slopes y[i].

The rationale behind this procedure is based on the fact that, for the classical cluster-
mass test, the statistical signal must be smooth enough to create large clusters. If using
the cluster-mass test on the original signals (y[i]) is an appropriate multiple comparisons
procedure, it means that the raw signals are also smooth enough. Hence, we match its
smoothness to the slope signals (ẏ[i]) in order to have slope signals smooth enough for a
cluster-mass test.

2.3.4 Simulation Study
The simulation study shows the advantages and limits of the use of the slopes in the
cluster-mass test. We keep the design simple in order to highlight the difference between
the classical cluster-mass test and its extension described previously. We simulate signals
using a design with 2 groups, with n = 22 participants and 600 time-points2. A t statistic
is used to test the hypothesis. The slopes are computed using smoothing splines with
a smoothing parameter such that the roughness of the original signals match the one of
their slopes. The FWER of both methods is, as expected, close to the nominal level (for
the classical cluster-mass test, q̂ = .053 with 95% CI [.046; .060], and for its extension
using the slope, q̂ = .050 with 95% CI [.044; .058]). Moreover, we simulate data with a
true effects similar to a ”wave” shape, with 3 spikes (positive, negative and then positive
as shown in the top panel of Figure 2.11). In Figure 2.11, we see the average power of
the test for each time-point using 3 different effect sizes. When the effect size on the
original signals is small (Figure 2.11, second panel from the top), the average power of

2The error are simulated using an exponential autocorrelation function ρ(τ) = −3(τ/30)2 (Abraham-
sen, 1997) and σ = 1.5
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Figure 2.11: Average power of the classical cluster-mass test and its extension using slopes.
The top panel represents the shape of the true effect and its slope. The bottom three
panels show the average power for effect size (β’s) multiplied by .25, .75 and 1. The
average power is higher between spikes when using the slopes.
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Table 2.1: The False Positive Rate corresponds to the average rate of discovery for the
time-points under the null hypothesis (1ms to 100ms and 419ms to 600ms, or white areas
in Figure 2.11). The False Positive Rate for the 10 time-points near the true effect (from
96ms to 100ms and 419ms to 423ms) is more influenced when using the slope. Finally,
the true discovery rate corresponds to the average rate of discovery for the time-points
under the alternative (between 101ms and 418ms or gray area in Figure 2.11). Confidence
intervals are computed using Agresti and Coull (1998).

Method Effect .25 Effect .75 Effect 1.0
False Positive Rate

Cluster-mass test .0027 [.0014;.0049] .0022 [.0011;.0042] .0020 [.0010;.0040]
Extension using slope .0039 [.0023;.0064] .0042 [.0026;.0068] .0043 [.0026;.0069]

False Positive Rate (10 nearest)
Cluster-mass test .0041 [.0025;.0067] .0038 [.0022;.0063] .0040 [.0024;.0065]
Extension using slope .0052 [.0033;.0080] .0118 [.0088;.0156] .0162 [.0127;.0206]

True Discovery Rate
Cluster-mass test .0390 [.0335;.0455] .5080 [.4928;.5237] .6364 [.6217;.6515]
Extension using slope .0375 [.0321;.0439] .6499 [.6353;.6649] .7904 [.7779;.8031]

both methods is small and using the slopes does not results in an increase of the average
power. However, when the effect size becomes larger (two bottom panel of Figure 2.11),
the transition between positive and negative spike is more often declared significant when
using the slopes. However, due to the smoothing of the slopes, more false positive tests
are measured at the edge of the true effects (see Table 2.1, section ”False Positive Rate (10
nearest)”). This may be a negative counterpart of the cluster-mass test using the slopes as
it increases the number of false positive. It results in clusters that may be larger than the
true effect. In our simulation settings, the average false positive rate is still low even for
the tests near the true effect (for the 10 nearest tests and high effect size: FPR = 0.0162)
but it may depend on the shape of the true effect. However, from a practical perspective,
neuroscientists may not be interested by the precise position (in time) of the edge of the
clusters and this uncertainty may be a reasonable trade-off for an increase in power.

2.4 Conclusion
In Section 2.1, we explain that permutation methods have a geometrical representation. It
helps to understand links between the permutation methods. However, the permutation
methods which modify the design (like dekker) are not well adapted to this graphical
representation. Indeed, in this case, the whole plan [D X] rotates for each permutation
which is more complicated both to represent graphically and also to understand using a 3D
graphic. However, a further exploration of this graphical representation may come from
the interpretation of the F statistic as a function of an angle. Using this interpretation,
permuting the response variables modify only one vector of this angle while permuting
the design modifies the other one. A better understanding of the effect of permutations
on this angle may leads to a clever graphical representation of the methods permuting
the design, especially for the dekker method.

In Section 2.2, we describe a real data analysis of a full scalp EEG experiment us-
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ing the cluster-mass test. We explain some challenges encounter from implementing the
cluster-mass test to the graphical representation of the results. We plan to implement the
functions used for this data analysis in the next release of the permuco package.

In Section 2.3, we present a cluster-mass test using the slopes of the signals to increase
the power of the test. This method has still to be investigated in details to be useful for
real data applications. Indeed, it has the drawback to increase the false positive rate.
Moreover, the choice of the smoothing parameter when using splines or local polynomial
is actually not made on an optimality criterion. A better understanding of the effect of
the smoothing parameter on the false positive rate could lead to a clever choice of the
smoothing parameters.



Chapter 3

Finite Sample and Asymptotic
Properties of the Conditional
Distribution by Permutations

3.1 Introduction
In this Chapter, we introduce theoretical findings on permutation methods for regression
and factorial designs. We propose a formalization of the distribution by permutation as
a conditional distribution given the observation of the response variable. We then show
that the expectation and variance of the conditional distribution by permutation can
be computed analytically. These findings are first applied to investigate the conditional
distribution by permutation of the F statistic for finite sample size. This approach is
general and is applied using several permutation methods including the one introduced
by Manly (1991), Kennedy (1995), Freedman and Lane (1983) or ter Braak (1992). It
allows to produce a correction of the permutation distribution of the kennedy method.
Similarly to Pauly et al. (2015) which found the asymptotic distribution for a Wald type
statistic in the Behrens–Fisher problem in a factorial design, we then derive the asymptotic
distribution by permutation for the F statistic in a similar setting. Finally, we show
the validity of several permutation methods as we give the asymptotic distribution of
the F statistic not only for the manly permutation method but also for the kennedy,
freedman lane and terBraak permutation methods.

3.2 Regression and ANOVA Model
The general setting is a regression model (which includes ANOVA) which equation is
written as:

Y = Dη +Xβ + ε, (3.1)

where Y is the response random variable, X are the interest variables associated to the
effects of interest β and D are the nuisance variables associated to the nuisance effects
η. We assume without loss of generality that the design [D X] is of full rank and with
variables that may be correlated. Moreover, we assume that the intercept is part of the
nuisance variables (1 ∈ D). Finally, ε is a random error following a distribution ε ∼ (0,Ω).
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In the model of Equation 3.1, we are interested in testing the hypothesis:

H0 : β = 0. (3.2)

We use a F statistic that we write:

FY = Y >HRDXY / (p− q)
Y >RD,XY / (n− p) , (3.3)

where H·, R· are respectively the ”hat” matrix and ”residuals” matrix of the design
in subscript. For a general full rank design matrix M , the ”hat” matrix is HM =
M(M>M)−1M> and the ”residuals” matrix is RM = I − HM . In our notation, the
subscript D,X means the column-wise binding of the matrices D and X, or [D X]. If
the error term follows a homoscedastic normal distribution (ε ∼ N(0, σ2

ε I)), we derive the
well known distributions under the null hypothesis:

σ2
εY
>HRDXY ∼ χ2(p− q) (3.4)

σ2
εY
>RD,XY ∼ χ2(n− p), (3.5)

which implies:

FY ∼ F (p− q, n− p). (3.6)

Moreover it implies that (p− q)FY asymptotically converges to a χ2(p− q) (Seber and
Lee, 2012). Note that the numerator and denominator of the statistic have both the same
expectation of σ2

ε in the parametric case since the expectation of a χ2 is the degrees of
freedom.

3.3 Finite Sample Conditional Distribution by Per-
mutation

In the following Section, we show that the conditional expectation of the numerator and
denominator of the F statistic can be computed analytically for the manly, kennedy,
freedman lane and terBraak method of Table 1.1. Cox and Hinkley (1979) already
proposed computing moments of the permutation distribution when testing linear depen-
dency between two variables. The results we present in the next Section allow to identify
the problem with the kennedy permutation method when using the F statistic as it is
well known that the kennedy method increases the type I error rate in finite sample
size (Anderson and Legendre, 1999). Moreover, they imply a natural correction for the
kennedy method. In addition, computing conditional expectations gives a good insight
why the manly performs well in simulation studies despite not reducing the effect of
nuisance variables. Finally, using a simulation study, we highlight the problem of the
kennedy method and show the improvement of the type I error rate using this natural
correction.

Given y, the equation of the model 3.1 is:

Y |y = y = Dη +Xβ + e, (3.7)

where y is the observed realisation of Y and e is the unknown realisation of ε.
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Lemma 1. For the linear model of Equation 3.1, over all permutations, the conditional
expectation of the numerator and denominator of the F statistic given the observation of
y are summarized in the following Table.

Manly Freedman-Lane terBraak Kennedy
Numerator 1

n−1y
>R1y

1
n−1y

>RDy
1

n−1y
>RD,Xy

1
n−1y

>RDy

Denominator 1
n−1y

>R1y
1

n−1y
>RDy

1
n−1y

>RD,Xy
1

n−1
n−p+q
n−p y

>RDy

The conditional expectation in Lemma 1 are equal for the numerator and denominator
using the manly, freedman lane and terBraak methods (like the parametric distri-
bution under normality and homoscedasticity assumptions). However, for the kennedy
method, the conditional expectation of the denominator is larger than the one in the
numerator. Note that y>R1y is the sum of squares of the empirical variance of the vector
y and y>RDy, y>RD,Xy are the sum of squares of the residuals of the ”small” and ”full”
model, respectively. Loosely speaking, manly inflates the numerator compared to the
parametric expectation but this is compensated by the same inflation in the denomina-
tor. This is formalized in Section 3.4.

3.3.1 Proof of Lemma 1 for the manly Permutation Method
Given the observation y of the response variable in Equation 3.1 and the set of all n!
permutation matrices of size n × n: P = {P1, . . . , Pn!}, the manly permutation method
is summarized by the transformation of the data {y,D,X} → {Py,D,X}. Using this
transformation, we define the conditional multivariate distribution by permutation given
the observation y by assigning the same probability to all permutations of the vector y:

Pr ((Y ∗|y) = Py) = 1
n! ∀P ∈ P . (3.8)

Then, the conditional expectation over all permutations of Y ∗|y is simply:

EP [Y ∗|y] =
∑
P∈P

Pr ((Y ∗|y) = Py)Py =
∑
P∈P

1
n!Py = H1y = 1

n
11>y. (3.9)

Moreover, by using the result of Equation C.2, we also compute its conditional variance
over all permutations:

VarP [Y ∗|y] = EP
[
Y ∗Y ∗ >|y

]
− EP [Y ∗|y] EP

[
Y ∗ >|y

]
= 1
n!
∑
P∈P

Pyy>P> −H1yy
>H1 = 1

n− 1R1y
>R1y. (3.10)

Finally, using the definition of the conditional distribution by permutation in Equa-
tion 3.8 and the property derived in Equation C.3 of Appendix C.1.1, we compute the
conditional expectation of the numerator of the F statistic:

EP
[

1
p− q

Y ∗>HRDXY
∗|y
]

= 1
p− q

1
n!y

>
(∑
P∈P

P>HRDXP

)
y = 1

n− 1y
>R1y, (3.11)
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Table 3.1: Type I error rate of tests of one or two parameters simultaneously (column
p− q) for a regression models with 2 different sample sizes (column n). If the ratio n−p+q

n−p
increases (column ratio), the discrepancy to the nominal level of the type I error of the
kennedy method also increases. Correcting the kennedy method by the inverse of the
ratio produces a type I error rate closer to the nominal level ( Ken. Corr.); like the
manly, terBraak and freedman lane methods (and the parametric test). Confidences
interval are computed using Agresti and Coull (1998). Bold font corresponds to nominal
level (5%) within the confidence interval and red font corresponds to confidence interval
above the nominal level.
n p-q ratio Parametric Manly Freedman-Lane terBraak Kennedy Ken. Corr.

10 1 1.8 .045 .043 .047 .045 .121 .053
[.039;.052] [.037;.050] [.041;.054] [.039;.052] [.111;.132] [.046;.060]

10 2 1.6 .050 .048 .050 .050 .119 .055
[.043;.057] [.042;.055] [.044;.058] [.043;.057] [.109;.129] [.048;.063]

20 1 1.27 .048 .047 .048 .049 .073 .046

[.042;.056] [.041;.054] [.042;.056] [.043;.056] [.066;.082] [.040;.054]
20 2 1.2 .050 .050 .051 .051 .069 .048

[.044;.058] [.044;.058] [.045;.059] [.044;.058] [.062;.077] [.042;.055]

and, for its denominator:

EP
[

1
n− p

Y ∗>RD,XY
∗|y
]

= 1
n− 1y

>R1y. (3.12)

In Appendix C.4 we derive the conditional distribution by permutation of the numera-
tor and denominator for the kennedy, freedman lane and terBraak which are reported
in Lemma 1.

3.3.2 A Modification of the kennedy Method
For the manly, freedman lane and terBraak methods, both numerator and denomina-
tor of the F statistic have the same expectation, similarly to the parametric setting. For
the kennedy method, the numerator and the denominator do not share the same con-
ditional expectation and we expect that it could lead to incorrect type I error for small
sample. However, we can correct the conditional distribution in order to have same ex-
pectation by dividing the permuted statistics by the factor n−p+q

n−p (but letting unchanged
the observed statistic). We use a simulation study to test the effect of the correction of
the kennedy method.

Extensive simulations for several permutation methods, under several conditions have
already been proposed. Anderson and Legendre (1999) propose simulation study showing
the type I error rate of the kennedy, freedman lane and terBraak methods and already
highlight the problems using the kennedy method. Kherad Pajouh and Renaud (2010)
add the huh jhun method to their simulation study and shows the type I error rate
under several distributions of the error terms. They show that huh jhun method keeps a
type I error rate close to the nominal level even under non-normality. Moreover, Winkler
et al. (2014) test, in addition, the manly and dekker (noted ”Smith” and attributed
to O’Gorman (2005) and Nichols et al. (2008)) permutation method, and also use the F
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statistic and a new statistic which adjusts the variance within each group. In addition to
several designs and error terms, they also test shuffling (coin-flip) instead of permuting
the data. They conclude that the dekker and freedman lane methods perform well
overall.

Our simulation study proposes only to highlight the effect of the ratio n−p+q
n−p on the

kennedy method. Hence, we choose to keep all parameters fixed while varying this ra-
tio. We simulated regression models, with 4 correlated continuous variables, a normal
homoscedastic uncorrelated random error (σ = 1). 1 or 2 parameters are tested simul-
taneously and 2 different sample sizes are simulated. In Table 3.1, we first see that
increasing the ratio n−p+q

n−p increases the type I error rate of the kennedy method and
has not any obvious effect on the other methods. Moreover, dividing the distribution by
permutation of the F statistics by n−p+q

n−p corrects the kennedy method and produces a
type I error rate close to the nominal level. Finally, all methods with the expectation of
the numerator and denominator equal, including the manly, freedman lane, terBraak,
the corrected kennedy methods and also the parametric distribution under normality,
keep the type I error rate close to the nominal level. All these findings confirm that
the computation of the conditional moments as described in Section 3.3 is a valid tool
to investigate the distribution by permutation in finite sample size of a statistic given a
permutation method.

3.4 Asymptotic of the Conditional Distribution by
Permutation

In the two-samples problem, let us first suppose that we are interested in testing the null
hypothesis H0 : F1 = F2 where F1 and F2 are distributions of the two populations. It
is well known that for any statistic, a permutation test is exact meaning that it attains
exactly its actual level, except for small discrepancies caused by the discreteness, including
ties in the values of the statistics (Efron and Tibshirani, 1994). However, if we are
interested in testing a null hypothesis that is specific to parameters, (e.g. the equality of
expectation of two distributions) results are more complex. Asymptotic properties have
already been studied by Romano (1990) for the comparison of 2 means. He shows that,
when using a statistic that is basically the difference of two means, the test is not valid for 2
groups of different sizes and different variances. However, Chung and Romano (2013) show
that using studentized statistics leads to valid tests. A similar result is proven by Pauly
et al. (2015) using a Wald type statistic for testing contrasts in a factorial design which
confirms the importance of studentized statistic in the Behrens-Fisher problem. Pauly
et al. (2015) found the asymptotic distribution of the Wald statistic using permutations
without restriction which we later called the manly permutation method. In the following
Section, we show that the F statistics is also a valid test for the same designs than Pauly
et al. (2015) and the proof holds for the manly, kennedy, freedman lane and terBraak
permutation methods.

The findings in Section 3.3 are general in a regression or ANOVA setting. However, in
the following Section, we must restrict the design. We assume a factorial design [D X] with
G groups or cells. This assumption include all (fixed-effect) one-way or factorial ANOVA
designs. The proportion of observations coming from these groups are κ̂1, . . . , κ̂G such
that κ̂1 + · · · + κ̂G = 1 and these proportions converge to positive values. Moreover,
we assume uncorrelated heteroscedastic error, with the same variance within each cell.
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Table 3.2: Asymptotic convergence by permutation method. σ2
Dη and σ2

ε
are defined in

Equation 3.21 and 3.22, respectively.

Manly Freedman-Lane terBraak Kennedy

Numerator
σ2
Dη + σ2

ε

p− q
χ2(p− q) σ2

ε

p− q
χ2(p− q) σ2

ε

p− q
χ2(p− q) σ2

ε

p− q
χ2(p− q)

Denominator σ2
Dη + σ2

ε σ2
ε σ2

ε σ2
ε

F 1
p− q

χ2(p− q) 1
p− q

χ2(p− q) 1
p− q

χ2(p− q) 1
p− q

χ2(p− q)

Altogether, it adds the following assumptions:

[D X] is a factorial design with 1 ∈ D, (3.13)

κ̂1, . . . , κ̂G → κ1, . . . , κG when n→∞, (3.14)
where κg > 0 ∀ g ∈ 1, . . . , G

and finally,

ε = [ε1 . . . εi . . . εn] ∼
(
0, diag(σ2

g(1), . . . , σ
2
g(i), . . . , σ

2
g(n))

)
, (3.15)

where σ2
g(i) = σ2

g <∞ ∀ g ∈ 1, . . . , G,

with σ2
g(i) the variance of the g(i)th group (or cell of a factorial design) and g(i) ∈ 1, . . . , G

is a function returning the cell number of the observation i. The function g(i) is added
to link the observations with the cell and is simplified by the subscript g to designate the
cell of the factorial design when it is possible. In a factorial design without empty cell,
the number of parameters is equal or greater than the number of variances (p ≥ G) and,
within each cell, all variances σ2

g are equal.

Theorem 1. Under the model in Equation 3.1, if the hypothesis in Equation 3.2 is
true and if the conditions 3.13, 3.14 and 3.15 are met, the conditional distribution by
permutation of (p− q)FY ∗ given the observation y converges to a χ2(p− q) when n→∞,
for the manly, kennedy, freedman lane and terBraak permutation methods. These
converging distributions are the same as the (unconditional) distribution under normality
and homoscedasticity assumptions. The details of the asymptotic distributions of the
numerator and denominator are presented in Table 3.2.

The proof of Theorem 1 uses properties of the ”hat” matrix and of the QR decompo-
sition which we first recall in Section 3.4.1.

In Section 3.4.2, we proove Theorem 1 for the manly permutation method and in Ap-
pendix C.4.1, C.4.2 and C.4.3, we prove Theorem 1 for the kennedy, freedman lane and
terBraak methods respectively which asymptotic results are summarized in Table 3.2.

3.4.1 Properties of the ”Hat” Matrix and of the QR Decompo-
sition

For a general full rank design matrix M , the diagonal elements HM :[ii] of the ”hat” matrix
HM = M(M>M)M> are mostly used to detect leverage points (Hoaglin and Welsch, 1978)
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in the regression setting. However, in a factorial design, the ”hat” matrix of the full design
HM computes the fitted values of the response variable which correspond to the means
of each group. This implies that the individual coding of the factors (for testing main
effects or simple effects, etc) does not influence the ”hat” matrix of the full design HM .
Without empty cell, the number of groups is equal to the rank of the full design matrix
(rank(M) = p = G). The ”hat” matrix of the full factorial design is then block-diagonal
when the observations are sorted by cells and is simply diag(H1nκ̂1

, . . . , H1nκ̂g , . . . , H1nκ̂p ),
where the κ̂g corresponds to the proportion of data coming from the cells g and 1nκ̂g is a
vector of 1s of length nκ̂g. In this example, H1nκ̂g = (nκ̂g)−11nκ̂g1>nκ̂g as 1>nκ̂g1nκ̂g = nκ̂g.
Finally, each diagonal element of HM is simply HM :[ii] = (nκ̂g(i))−1.

The QR decomposition of M is especially useful as it defines an orthonormal basis
M . The projection used in the F statistic may be computed in this new basis while
using properties of an orthonormal basis. Algebraically, the QR decomposition produces
M = QMUM , such that QM is an orthonormal basis of the span of M and UM is an upper
diagonal square matrix. Geometrically, a projection on the span of M is the same as the
projection on the span of QM as:

HM = QMUM
(
U>MQ

>
MQMUM

)−1
U>MQ

>
M

= QMUM (UM)−1
(
U>M

)−1
U>MQ

>
M

= QMQ
>
M = QM

(
Q>MQM

)
Q>M = HQM , (3.16)

using the orthonormal properties of QM , Q>MQM = I.
The Grahm-Schmidt process (Pursell and Trimble, 1991; Seber and Lee, 2012) is used

to compute the QR decomposition. It decomposes a matrix M into QMUM . However, we
are mainly interested by the properties of the QM . Using the Grahm-Schmidt process,
the QM matrix may be written using ”residuals” matrices. The jth column of the QM

matrix is:

QM :[j] =

 M[j]/
√
M>

[j]M[j] for j = 1
RM[1...j−1]M[j]/

√
M>

[j]RM[1,...,j−1]M[j] for j > 1,
(3.17)

where the square brackets in subscript indicate a selection of columns. Moreover, the
denominators are the norm of the numerators in order to produce normalized column
vectors of QM . Each step of the algorithm computes the residuals of a regression and
normalizes them. When the design is split into nuisance and interest variables as in
Equation 3.1 (M = [D X]), the Grahm-Schmidt process also implies the following equality
QD,X:[q+j] = QRDX:[j] ∀ j ∈ 1, . . . , p− q, provided that D is of full rank.

In addition, using again the orthonormality property of QM , the ”hat” matrix of the
full design [M ] is rewritten using the p vectors QM :[j] such that:

HM = QMQ
>
M =

p∑
j=1

QM :[j]Q
>
M :[j]. (3.18)

It follows that the QR decomposition helps us to rewrite the sum of squares used in
the F statistic. For the denominator, we have the following form:

1
n− p

y>RMy = 1
n− p

(
y>y − y>HMy

)
= 1
n− p

y>y −
p∑
j=1

(
1√
n− p

Q>M :[j]y

)2

, (3.19)
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where QM =
[
QM :[1] . . . QM :[j] . . . QM :[p]

]
is an orthonormal basis of M . Moreover,

if the first column of M codes the intercept implies that QM :[1] = 1√
n
1.

Finally, in a factorial design, the construction of the QR decomposition described in
Equation 3.17 implies that each observation (i.e. line) belonging to the same cell has the
same element of QM :[j] ∀j (i.e. QM :[ij] = QM :[i′j] whenever g(i) = g(i′)).

3.4.2 Proof of Theorem 1 for the manly Permutation Method
Using, model assumptions 3.13, 3.14 and 3.15, we first deduce some intermediary conver-
gence results under the null hypothesis:

1
n

1Dη → µDη <∞, (3.20)
1
n
ηD>R1Dη → σ2

Dη <∞, (3.21)
1
n
eR1e → σ2

ε <∞. (3.22)

The convergence 3.20 and 3.21 holds for a factorial design under assumptions in Equa-
tions 3.14 and 3.15, µDη is the population overall mean and σ2

Dη is weighted dispersion of
the group means. Finally, σ2

ε is the weighted average of the error variances σ2
ε = ∑G

g=1 κgσ
2
g .

Then, using the QR decomposition, we write the numerator of the F statistic:

1
p− q

Y ∗ >HRDXY
∗ =

p−q∑
j=1

(
1√
p− q

Q>RDX:[j]Y
∗
)2

, (3.23)

and its denominator:

1
n− p

Y ∗ >RD,XY
∗ = 1

n− p
Y ∗ >Y ∗ −

p∑
j=1

(
1√
n− p

Q>D,X:[j]Y
∗
)2

. (3.24)

Theorem 1 is proven by computing the asymptotic of each term of the denominator
(Equation 3.24) and each term of the numerator (Equation 3.23) of the F statistic.

We first show that conditional distribution of the denominator converges in probability
when assuming the null hypothesis. The first part of the denominator ( 1

n−pY
∗ >Y ∗)

converges in probability as:

EP
[

1
n− p

Y ∗>Y ∗|y
]

= 1
n− p

y>y → µ2
Dη + σ2

Dη + σ2
ε , (3.25)

where details are given in Appendix C.3 and

VarP
[

1
n− p

Y ∗>Y ∗|y
]

= 0, (3.26)

as Y ∗>Y ∗|y = y>y for all permutations.
For the elements of the second part of the denominator ( 1√

n−pQ
>
D,X:[j]Y

∗ in Equa-
tion 3.24), we assume that the intercept is coded in the first column of the matrix D.
Using the Grahm-Schmidt process, the QR decomposition of the design is such that
QD,X:[1] = 1√

n
1. Moreover, all vectors QD,X:[j] for j ∈ 2, . . . , p are orthogonal to 1 such
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that Q>D,X:[j]1 = 0 for j ∈ 2, . . . , p. Using these properties and Equation 3.9, we find
convergence in probability of the second part of the denominator by computing:

EP
[

1√
n− p

Q>D,X:[j]Y
∗|y
]

= 1
n
√
n− p

Q>D,X:[j]11>y =


1√

n(n−p)
1>y → µDη for j = 1

0 for j ∈ 2, . . . , p
(3.27)

Then, the convergence of the conditional variance of 1√
n−pQ

>
D,X:[j]Y

∗ is derived:

VarP
[

1√
n− p

Q>D,X:[j]Y
∗|y
]

= 1
n− p

Q>D,X:[j]VarP [Y ∗|y]QD,X:[j]

= 1
(n− p)(n− 1)y

>R1yQ
>
D,X:[j]R1QD,X:[j]

= 1
(n− p)(n− 1)y

>R1y
(

1− 1
n

(
1>QD,X:[j]

)2
)
→ 0, (3.28)

where the 2 equalities come from Equation 3.10 and 1
n−1y

>R1y is the empirical variance
of y and therefore bounded.

By using the continuous mapping theorem (Mann and Wald, 1943) and Equation 3.25
to 3.28, the conditional distribution of the denominator converges in probability to σ2

Dη +
σ2
ε .

We then show that the terms in the numerator ( 1√
p−qQ

>
RDX:[j]Y

∗ ∀ j ∈ 1, . . . , p− q )
converge to normal distributions. We compute its conditional expectation and variance:

EP
[

1√
p− q

Q>RDX:[j]Y
∗|y
]

= 1√
p− q

Q>RDX:[j]H1y = 0, (3.29)

and

VarP
[

1√
p− q

Q>RDX:[j]Y
∗|y
]

= 1
(p− q)(n− 1)y

>R1Q
>
RDX:[j]R1QRDX:[j]y

= 1
(p− q)(n− 1)y

>R1y →
1

p− q
(
σ2
Dη + σ2

ε

)
, (3.30)

where the third equation uses the property Q>RDX:[j]R1QRDX:[j] = 1 if 1 ∈ D.
Similarly to Pauly et al. (2015), 1√

p−qQ
>
RDX:[j]Y

∗|y is a weighted sum of Y ∗|y and
it therefore has the same conditional distribution as 1√

p−qQ
∗ >
RDX:[j]Y |y, where Q∗RDX:[j]

is defined as a random variable following the distribution by permutation of the vec-
tor QRDX:[j] (similarly to Equation 3.8). More precisely, each equiprobable outcome of

1√
p−qQ

>
RDX:[j]Y

∗|y corresponds to one outcome of 1√
p−q (Q

∗
RDX:[j])>Y |y such that:

1√
p− q

(
P>QRDX:[j]

)>
Y |y = 1√

p− q
Q>RDX:[j]PY |y ∀ P ∈ P . (3.31)

It follows the equality in distribution of the two notations:
1√
p− q

(
Q∗RDX:[j]

)>
y

d= 1√
p− q

Q>RDX:[j]Y
∗|y. (3.32)

Moreover, adapting the equations 8.3 to 8.7 of the Supplementary Material of Pauly
et al. (2015) (applying himself theorems in Pauly (2011) and Janssen (2005)) , the asymp-
totic normality of Equation 3.32 is proven if 5 conditions (from Equation 3.33 to 3.37)
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are met. Like Pauly et al. (2015), we show that they directly result from the model
assumptions presented in Equations 3.13, 3.14 and 3.15. The 5 conditions are written:

max
i∈1,...,n

∣∣∣∣∣ 1√
n

(R1y)i

∣∣∣∣∣→ 0, (3.33)

1
n
y>R1y → σ2

Dη + σ2
ε , (3.34)

max
i∈1,...,n

∣∣∣(QRDX:[j]
)
i

∣∣∣→ 0, (3.35)

Q>RDX:[j]QRDX:[j] = 1, (3.36)

and, finally,
√
n
(
Q∗RDX:[j]

)
i

D→ (0, 1) ∀ i. (3.37)

To verify the condition in Equation 3.33, we apply the results in Appendix C.2 within
each cell to prove the convergence:

max
i s.t. g(i)=g

∣∣∣∣∣∣ 1√
κ̂gn

(y)i

∣∣∣∣∣∣→ 0 ∀ g ∈ 1, . . . , G. (3.38)

It follows that

max
g∈1,...,G

 max
i s.t. g(i)=g

∣∣∣∣∣∣ 1√
κ̂gn

(y)i

∣∣∣∣∣∣
→ 0, (3.39)

which consequently verifies the condition in Equation 3.33.
Moreover, the condition in Equation 3.34 stems from the convergences defined in

Equations 3.21 and 3.22.
The condition in Equation 3.35 depends directly on the behaviour of the diago-

nal of the ”hat” matrix HD,X . Using Equation 3.18, we find the following inequality:∣∣∣(QRDX:[j]
)
i

∣∣∣ ≤ √
HD,X:[ii] for all i ∈ 1, . . . , n. In a factorial design, we recall that the

diagonal elements of the ”hat” matrix depends on the proportion of observations in each
group such that

√
HD,X:[ii] = (nκ̂g(i))−1/2. In addition, the condition in Equation 3.14

assumes the convergence to a finite value of κ̂g(i) = κ̂g → κg ∀ g ∈ 1, . . . , G when n→∞
which implies condition in Equation 3.35.

The condition in Equation 3.36 is satisfied as it depends directly on the construction
of the QR decomposition.

Finally, for a finite sample size, the distribution by permutation of Q∗RDX:[j] is such
that, EP

[
Q∗RDX:[j]

]
= H1QRDX:[j] = 0 and VarP

[
Q∗RDX:[j]

]
= 1

n−1R1Q
>
RDX:[j]R1QRDX:[j] =

1
n−1R1, as QRDX:[j] is orthogonal to 1 which implies the convergence in Equation 3.37.

Altogether, results in Pauly et al. (2015) hold for the terms of the numerator 1√
p−qQ

>
RDX:[j]Y

∗|y
and proves their asymptotic normality (N

(
0, 1

p−q (σ
2
Dη + σ2

ε )
)
). As Q>RDX:[j]QRDX:[k] =

0 ∀ j 6= k, the p− q asymptotic distributions of 1√
p−qQ

>
RDX:[j]Y

∗|y for j ∈ 1, . . . , p− q are
independent which proves Theorem 1.
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3.5 Conclusion
In Chapter 3, we show how to compute both small samples and asymptotic properties
of the F statistic under several permutation methods. The small samples properties
are computed using expectation over all permutations of matrices or vectors. We show
in Appendix C.1.2 and C.1.3 that similar results are obtained using shuffling matrices
(which are used under heteroscedasticity) or ”bootstrap” matrices. Our new approach
may lead to finite samples properties using these transformations too.

Note that we investigate finite samples and asymptotic properties in the univariate
case only. Using the conditional distribution by permutation, we may find interesting
properties in the multivariate cases. Indeed, we should be able to compute the condi-
tional correlation (or covariance) between two conditional distributions of the response
and extend these results to the conditional correlation (or covariance) between tests. In
addition, the multiple comparisons procedures greatly benefit from the correlation be-
tween the tests, hence, understanding the conditional correlation between tests is directly
related to the problem of EEG data analysis.

Finally, the asymptotic conditional distribution is proven only for a factorial design.
However, the use of the QR decomposition allows to handle both regression and factorial
design until the late stage of the proof. The results in (Jayakumar and Sulthan, 2014)
which gives the distribution of the diagonal elements of the ”hat” matrix under multi-
variate normality of [D X] or other appropriate assumptions on the design matrix [D X]
(e.g. compact support) could help to prove Theorem 1 for a general regression setting.





Chapter 4

The Correlation Structure of
Cross-Random Effects Mixed-Effects
Models

The following Chapter is the main part of an article submitted to the journal Psychological
Methods (Frossard and Renaud, 2019).

Abstract. The design of experiments in psychology can often be summarized to partic-
ipants reacting to stimuli. For such an experiment, the mixed effects model with crossed
random effects is usually the appropriate tool to analyse the data because it considers
the sampling of both participants and stimuli. However, these models let to users several
choices when analysing data and this practice may be disruptive for researchers trained to
a set of standardized analysis such as ANOVA. In the present article, we are focusing on
the choice of the correlation structure of the data, because it is both subtle and influential
on the results of the analysis. We provide an overview of several correlation structures
used in the literature and we propose a new one that is the natural extension of the
repeated measures ANOVA. A large simulation study shows that correlation structures
that are either too simple or too complex fail to deliver credible results, even for designs
with only three variables. We also show how the design of the experiment influences
the correlation structure of the data. Moreover, we provide R code to estimate all the
correlation structures presented in this article, as well as functions implemented in an R
package to compute our new proposal.

4.1 Introduction
The statistical practice in psychology is dominated by the ANOVA. It has been a stan-
dardize tool to analyse various experiments or randomized control trials. ANOVA and
particularly repeated measures ANOVA (rANOVA) are useful to consider the variability
induced by the sampling of participants in the experiment. The complexity of the experi-
ment tends to increase and there is a need for more complex statistical tools (Boisgontier
and Cheval, 2016). The experiments often are designed by crossing a sample of partici-
pants and a sample of stimuli (e.g. images or words). To take into account the induced
variability of both the sampling of participants and stimuli, methodologists suggest using
crossed random effects mixed effects models (CRE-MEM) (Clark, 1973; Baayen, 2008;
Lachaud and Renaud, 2011; Judd et al., 2012). These models are part of the family of
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mixed effects models (MEM) and sometimes called crossed random effects models. They
have been introduced by Baayen (2008), Lachaud and Renaud (2011) or Judd et al. (2012)
to psychologists, discussed by Barr et al. (2013) and Bates et al. (2015), and efficiently
implemented by Bates et al. (2015) in the R programming language.

The CRE-MEM are used to test factors or fixed effects in experiments but need a
correlation structure of the response variable as a set of parameters specified by users.
The correlation structure is a set of assumptions on the distribution of the response
variable, more specifically its covariance matrix. It models the full consequences that
the variability induced by the sampling of participants and stimuli have on the response
variables. For instance, if the responses of the same participant are correlated seems
reasonable, or if the responses to the same stimuli are correlated seems also reasonable.
This correlation structure is complexified by assuming that the responses of the same
subject in the same condition are even more correlated, etc. In the literature, CRE-MEM
are used assuming very simple correlation structures to very complex ones. In this paper,
we discuss the effect of the choice of correlation structure on the tests of fixed effects.
We will see that this discussion was already relevant in the rANOVA framework and that
some of its conclusion should be transposed to CRE-MEM.

In Section 4.2, we explain the main differences and similarities between the CRE-MEM
and rANOVA. We discuss the default choices that are made in the rANOVA framework
and open choices in CRE-MEM, and we focus on the correlation structure of the data.
In Section 4.3, we present the statistical models of rANOVA and CRE-MEM with pub-
lished examples. In Section 4.4, we discuss how the design of the experiment influences
the correlation structure and propose a classification of variables that is general for any
experiment using both participants and stimuli. In Section 4.5, we present the main
correlation structures used in the literature, discuss their properties and propose a new
one that is the natural candidate to generalize the rANOVA. In Section 4.6, we present
a simulation study that shows consequences of the choice of the correlation structure on
the type I error of test of fixed effects. This simulation study allows us to advise again
some correlation structures that may the inflate type I error. In Appendix, readers will
find ready to use R codes for all correlation structures presented in this article as well as
many extensions designed to understand CRE-MEM and their correlation structures.

4.2 ”All models are wrong, ...”, but why?
When analysing an experiment, we are mostly interested in testing a few hypotheses.
However, this cannot be achieved without (explicitly or implicitly) building a statistical
model, choosing a test statistic and computing its associated p value or other decision
rules. All those steps require to choose settings among several options. For classical
analyses, those options are often hidden to users (e.g. the model underlying rANOVA
cannot be changed in many software although several models are conceivable) and even
the distinction between model and test is fuzzy. For instance, the ANOVA refers both
to tests statistics (test of the differences of means with a F statistics), or to a model
(linear model with factors and all their interactions) (Gelman, 2005). We can hypothesise
that this framework was created not only intentionally by methodologists, but also by
tradition and by the use of default settings in software. By contrast, for CRE-MEM, no
consensus exists for the choice of the statistic of the tests of fixed effects, neither for the
choice of the model (and its correlation structure) and software usually let users tune each
setting. Coming from the rANOVA framework, users must make choices that they are
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not used to, and, each of them will have consequences on the results of the data analysis
(in particular on the p-value). The most influential choice is the statistical model which
is a set of assumptions on the mathematical relationship between the response variable
and the design and the measurements of an experiment. It is mathematically summarized
by probability distributions with unknown parameters. Hence, to perform a good data
analysis, researchers must choose a reasonably good model. But there is no unique answer
to what a good data analysis is, hence, no unique choice for the statistical model.

Many interesting thoughts have already been written about the relationship between
the statistical model and the real phenomena we are interesting in. And as Box and Draper
(1987) warn, “Essentially, all models are wrong, but some are useful”. Indeed, even for the
simplest experiment that compares two groups, nobody can guarantee that the data are
Gaussian, with the same variance for the two groups, independent (and randomly sampled
from the population), which are necessary assumptions of the t test or one-way ANOVA.
If these assumptions are not met, one cannot know how misleading the p-value obtained
by a t-test will be. There is no “right model” for this simplest experiment, and therefore
no sure answer to the research question. For complex experiments with many variables,
participants and stimuli, there is no “right model” either. However, some models will be
more useful in the sense that they will deliver an answer to the research hypotheses that
is more valuable. And we can measure the value of a model depending on the goal of the
data analysis: it can be the prediction power, or the replicability of the findings or finding
a model close to the real phenomena. So, the model and consequently the correlation
structure in case of a CRE-MEM should be assumed in order to best fulfil the goal of the
data analysis.

In this article, we concentrate on frequentist approach and evaluate the effect of the
model on the p-value. However, all the argument developed here are also relevant in a
Bayesian framework, as the choice of the model influences the results equally.

In the following sections, we recall the choices user faces when analysing data with a
CRE-MEM, and establish parallels with more usual models like regression and ANOVA.

4.2.1 The Predictors in a Linear Model
Regression, 2 samples t test and factorial ANOVA (without repeated measures) are subsets
of the same model: the linear model which is sometimes called general lineal model. The
main feature of linear models is to assume a linear relationship between one or several
predictor(s) (continuous variables, factors or interactions) and the mean of the response
variable (also called dependent variable or outcome). Those 3 methods are mainly different
in the choice of the predictors in the model. The 2 samples t test refers to a linear model
with one factor with only two levels, the choice of the predictor in this model is entirely
defined by the hypothesis. A factorial ANOVA refers to a linear model with several factors
(with possibly more than 2 levels) and all their interactions. In that case, users have
more options, as they may include more predictors than constraints by their research
hypothesis. More importantly, the ANOVA tradition imposes to select all interactions
although this might not be necessary. In contrast, for regression, we do not assume a
model with constraints on the choice of the predictors, and usually users have to choose
themselves the appropriate predictors and do not add interactions except if it represents
a hypothesis.

It is noteworthy that the regression and ANOVA traditions are so different although
they are based on the same (general) model. However, none of these approaches guarantees
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that the “right model” is used as, once again, all models are wrong.
In CRE-MEM, software let users choose which predictors and which interactions to

include in the model, as in the regression tradition. However, to analyse data from
experiments, the ANOVA tradition is still influential, and researchers tend to include all
interactions of the selected factors.

Although very important as these choices will have an impact on the inference (p-value)
of one’s hypothesis (e.g. the main effect of a precise predictor) in regression, ANOVA and
in CRE-MEM, they will not be discussed further as we will concentrate on the correlation
structure.

4.2.2 The Error Terms and the Correlation Structure
Concerning classical models, ANOVA (without repeated measures), regression and 2 sam-
ples t-test assume an error term which is (1) normally distributed, (2) independent, and
(3) homoscedastic. When one or several of those assumptions is/are not true, users should
perform other statistical analysis. The first strategy is to use other tests statistics and per-
form, for instance, quantile regression for skewed residuals (Koenker and Bassett, 1978),
robust regression for heavy tails distribution of the errors (Heritier et al., 2009), Wilcoxon
test (Wilcoxon, 1945) or Kruskal-Wallis test (Kruskal and Wallis, 1952) when the errors
are not normally distributed. Moreover when the errors are heteroscedastic, we can also
change the statistics and use Welch’s statistics (Welch, 1951, 1947) or Satterthwaite’s ap-
proximation (Brown and Forsythe, 1974). A second strategy is to use re-sampling methods
like bootstrap (Efron and Tibshirani, 1994) or permutation tests which allow to compute
distribution of statistics when the errors do not satisfy the default assumptions of nor-
mality. However, re-sampling method are still influenced by outliers and, in that case, it
is still recommended to use robust estimators even within re-sampling (Salibian-Barrera
and Zamar, 2002).

When some responses are linked, correlated with others, it implies that the errors may
not be independent and homoscedastic, and it violates the assumption of the linear model.
In that case, we must use a more complex model as we need to include the correlation
structure of the data in its assumptions. This question arises as soon as several measures
are made on the same sampling unit (e.g. a participant). This is the case when performing
a one-way rANOVA. Its underlying model may be represented as a mixed-effects model
(MEM) and it decomposes the error term into an error term per observation and a random
effect (unique for each participant). We call the latter a random intercept and it considers
that some participants are better/worst (have higher/lower response values) on average
over all experimental conditions than others. For the MEM underlying a rANOVA, we
must make assumptions on the distribution of both the error term (independent and
homoscedastic), and the random effects (here also independent and homoscedastic) to
fully define the model with its correlation structure.

In less complex models with only one measure per participant (like a 2 samples t tests
or an ANOVA), the assumption of random intercepts per participant may be relevant in
the sense that, in the true phenomena we are observing, some participants are likely to
be better than others. But, with only one measure per participant, this random effect
(its variability) will not be estimable because it will be included/confounded with the
error term. Hence, a less complex design allows less random effects to be estimable.
The corollary is that a more complex design allows more random effects to be estimable.
And, with a complex experimental design, we may be able to estimate not only random
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intercepts per participant but also random slopes. By analogy to the regression, the
literature defines a random slope as a random effect that describes the variation of a
subject given the value of a covariate or a factor and represents the change of slope of
this subject with respect to one of the population; and we can generalize this concept to
random interactions which represents the change of interaction effect with respect to the
population for each subject.

In a complex MEM, the choice of the correlation structure not only includes which
random effects we assume in the model (random intercepts, slopes and interactions) but
also their full (joint) distribution. If each participant has more than one random effect,
all those random effects create together a multivariate random effect and we have to make
assumptions on its full multivariate distribution. For instance, we can assume correlation
between random effects or constraints like the equality of variance of several random
effects. This correlation is for example relevant in learning processes, where it seems
natural to assume that someone with a lower score at the beginning will learn more than
someone with a higher starting score. This feature can be implemented in the model by
assuming that the random intercept (for a participant, his score’s difference with respect
to the average) is correlated with the random slope (for a participant, the learning’s
difference with respect to the average learning); in this example, we therefore expect a
negative correlation between the random intercept and the random slope. As a second
example, the equality of some variances is used to implement spherical random effects
and it is mainly used for factors. We could specify a different variability for each level of a
factor, but this assumption is often neither useful nor rooted with strong information on
the correlation structure. As a result, it is reasonable to assume spherical random effects
which means that, in each level, random effects will have the same variability. Here, the
sphericity assumption reduces the number of free parameters and increases the parsimony
of the model.

rANOVA is said to control the type I error rate at its nominal level. However, this good
property is mathematically derived assuming a specific model with its specific correlation
structure. Specifically, the correlation structure underlying the rANOVA is assumed to
be saturated which means that the random intercepts, random slopes and random inter-
actions are all included (up to the last interaction which is confounded with the error
term). Moreover, all effects are independent and spherical within each factor or interac-
tion. The model underlying the rANOVA is a special case of MEM and researchers could
use the MEM framework to analyse this type of data. It is however appropriate only if
its assumptions are tenable.

When the response variable is the result of the crossing between the samples of 2
units (typically participants and stimuli/pictures), we model the response using a CRE-
MEM. The correlation structure becomes much more complex because random effects can
be associated with the participants and the stimuli but also with their interactions. To
define the correlation of a CRE-MEM, we need to select which random intercepts, slopes
or interactions and which multivariate distributions we assume for the participants and the
stimuli. Moreover, if it is relevant to assume that some participants may be better/worst
with some stimuli, we specify this feature by including in the correlation structure random
effects associated to the interaction between the participants and stimuli. As for any
MEM, the estimable random effects are also constrained by the design, and by which
fixed variable is included in the model. And the set of random effects estimable which
depends on the design becomes more complex with two sampling units rather than only
one. To have the full picture of the estimable effects, we develop a classification of variables
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in Section 4.4.

4.2.3 The Test Statistics
The model is specified in Section 4.2.1 and Section 4.2.2 and for the sake of completeness,
the testing procedure, which includes the test statistic, its distribution and the associated
p value, have to be specified. For the regression or ANOVA model, the common solution is
to use t or F statistics. If the model is well specified and the assumptions of independence,
homoscedasticity and normality of the errors are met, they provide tests that are exact
and powerful (low type II error rate). As we saw in Section 4.2.2, for those simple models,
there exists alternative solutions when the model is not well specified.

However, for CRE-MEM, no exact solution exists even if the assumptions of the model
are met. Methodologists still debate the advantages of 4 test statistics: the quasi-F
statistic (Clark, 1973; Raaijmakers et al., 1999), the likelihood ratio statistics (and its
chi-square asymptotic distribution), the Satterthwaite’s approximation (Schaalje et al.,
2002) and the Kenward-Roger approximation (Kenward and Roger, 1997). The quasi-
F statistic is limited to balanced design using only factors and simulation studies tend
to show that the likelihood ratio test does not control type I error rate very well. By
contrast, the Satterthwaite and the Kenward-Roger approximations seem to be closer to
the nominal level when the model is well specified and its assumptions are met (Luke,
2017). Simulations show that the latter seems to perform slightly better but at a higher
computation cost.

Only the quasi-F statistics imposes condition on the correlation structure. As for
rANOVA, the statistic is based on sum of squares and the distribution on the quasi-
F statistic approximates a F distribution only by assuming spherical and uncorrelated
random effects.

4.2.4 The Design-Driven vs Data-Driven Approach
In Section 4.2.1, 4.2.2 and 4.2.3, we described the main choices a researcher have to
do when analysing data. Once again, no choice can guarantee that the right model is
used, but there are two “families” of strategies that are often implemented to attempt to
obtain this useful model. The two approaches are well described by Barr et al. (2013).
Moreover, Shmueli (2010) found a similar dichotomy when discussing the goals of the data
analysis which are either explanatory modelling with methods related to the design-driven
approach or predictive modelling related to the data-driven approach. Here we recall and
enhance their descriptions.

The first approach is called design-driven and is prominent in the ANOVA setting. It
is usually performed to analyse data issued from experiments in which all variables are
carefully chosen in advanced, and where we expect to find a causal relationship between
variables. The creation of the model is instrumental to reporting a test of hypothesis and
all the choices of the analysis could be made before even collecting the data. The main
worry of the analyst is to control the type I error rate and the replicability of the findings.

The second approach, called data-driven, plays a prominent role in regression, which
has many extensions in model selection like the Lasso (Tibshirani, 1996). The focus of the
analysis is not to test hypotheses, but to find a good model in the specific sense that it
provides good prediction capacity and is parsimonious. The chosen model should be the
closest to the true underlying model or, at least, should produce similar predictions. In
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this context, external assumptions are kept minimal and ideally all the choices are merely
based on the data. The main worry of the analyst is over-fitting.

This typology is clearly a caricature and real data analyses always lie somewhere
between these two extremes. For experimental designs, the first approach seems more
relevant. This is the case for the ANOVA/rANOVA framework which has standardized
the data analysis. Regardless of the scientific domain, researchers perform tests of main
effects, interactions, contrasts, simple effects or post-hoc analyses using the same con-
struction of fixed effects and, for rANOVA, the same correlation structure. By contrast,
no standard solution is as well established to analyse CRE-MEM: if researchers tend to in-
clude all fixed effects in the linear predictor, the random structure that should be assumed
is still debated. Data-driven (Bates et al., 2015) or design-driven (Barr et al., 2013) solu-
tions have been proposed, and our solution (referred latter to gANOVA in Section 4.5.5)
is a parsimonious design-driven approach which generalizes the correlation structure of
rANOVA to several random units.

4.3 rANOVA and CRE-MEM
In order to understand the (sometimes hidden) correlation structure of the models behind
usual analyses, we first investigate the model of rANOVA, highlight some of its properties
and show how this model can be extended to CRE-MEM. To illustrate with a research
example, we present the publication of Erickson et al. (2011) who use a rANOVA to
analyse their experiment. They are interested in the effect of exercise on the volume of the
brain of elderly participants. They split the sample into an aerobic training group (AT)
and a stretching control group (SC) and measured their brain volume using magnetic
resonance images at the baseline (BL), after 6 months (6M) and after one year (1Y)
of training. This experiment is analysed using a generic rANOVA with one between-
participant variable (the group with two levels: AT and SC), and one within-participant
variable (the time with 3 levels: BL, 6M and 1Y). We note that the between-participant
variable is a feature of the participants because the participants are not allowed a change
of levels during the experiment. And the within-participant variable indicates a feature
of the experimental manipulation: the time of data collection, which is defined by the
experimenter. As for many models, each response, is decomposed into fixed effects and
random effects. Following the notation of e.g. Howell (2012), we write the underlying
model using the equation:

yijk = µ+ αj + ψk + (αψ)jk (4.1)
+ πi + (πψ)ik + εijk,

where yijk is the response variable, here the brain volume of the ith participant, assigned to
group j on the kth occasion of measure. The fixed part of the equation is decomposed into
the between-participants effects and within-participants effects. The between-participant
effects are αj for j ∈ {1, . . . , nj}, which corresponds to the main effect of the groups. The
within effects are ψk for k ∈ {1, . . . , nk}, which correspond to the effect of the time and all
interactions that contain it. Here (αψ)jk is the effect of the interaction group:time in our
example. The random part is composed of random intercepts πi for i ∈ {1, . . . , ni} which
correspond to the participant’s average brain volume relative to the overall mean brain
volume, and random slopes, (πψ)ik, which is interpreted as the difference of the time’s
effect of each participant to the population time’s effect on brain volume. Finally, the
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error term εijk ∼ N (0, σ2
ε ) capture everything that cannot be captured by the previous

terms. The correlation structure used in the rANOVA model is implied by the assumed
distribution of the πi’s and (πψ)ik’s. To have an exact test for the fixed effect in rANOVA,
we must assume that the random effects ψk, (πψ)ik, follows each a normal homoscedastic
distribution. Therefore, the assumed correlation structure needs 2 variance parameters in
addition to the error term1. Except for this last random effect, each term in Equation 4.1
is associated to a sum of squares as produced by many statistical software. This model
is today’s standard in statistical software and in published researches, but it is the result
of a debate dating from the 70’s. We provide in Appendix D.1, a small summary of the
discussion and arguments that lead to what we now today as a rANOVA.

The model represented by Equation 4.1, should only be used when we assume only
one sampling unit, the participants. In many studies, in addition to the sampling of
participants, researchers sample stimuli, and the value of the responses will depend on
the crossing of a sample of participants and a sample of stimuli. In that setting, we
also must consider the variability induced by this second sampling, which means using
a CRE-MEM. To illustrate with a research example, Wilson et al. (2017) performed
several experiments that highlight racial biases in judgement of physical size and weight
and analyse them with a CRE-MEM. They showed to a sample of male participants a
sample of stimuli (images of Black men) and asked the participants to evaluate the size
of the people shown in the stimuli. As each participant viewed each stimulus, we say
that the estimation of size was made by crossing participants and stimuli. Wilson et al.
(2017) recorded also features of the participants, their race: Black (B) or White (W),
and features of the stimuli, the actual size of the people in the images. Note that each
stimulus is evaluated in each level of the factor race, which means they are evaluated by
Black and by White participants. And each participant sees stimuli of different actual
sizes. It may have been interesting to also change the presentation of the stimuli, where
stimuli are shown in a neutral environment (N) or with a context (C) where the size is
easier to evaluate 2. We will assume that each participant sees each stimulus two times:
in the neutral environment and with a context. This third factor is then a feature of the
experimental manipulation each pair participant-stimulus are recorded in both contexts.
To analyse this experiment, we use a CRE-MEM which equation is written:

yimk =µ+ αj + ψk + φl + (αψ)jk + (αψ)jk + (ψφ)kl + (αψφ)jkl (4.2)
+ πi + (πψ)ik + (πφ)il + (πψφ)ikl
+ ωm + (ωψ)mk + (ωα)mj + (ωψα)mkj
+ (πω)im + (πωψ)imk + εimk,

with the response yimk (here the estimated size) and with a fixed part written in the
first line of Equation 4.2 composed of αj (features of participants: here the race), ψk
(features of stimuli: here the actual size), φl (features of experimental manipulation: here
the presentation of stimuli), and their interactions, (αψ)jk, (αψ)jk, (ψφ)kl and (αψφ)jkl.
The decomposition of the random part has then effects associated to the participants
and their interactions with some factors (second line of Equation 4.2), πi, (πψ)ik, (πφ)il
and (πψφ)ikl; effects associated to the stimuli and their interactions with some factors

1Actually, rANOVA models are always overparametrized as the highest interaction, here (πψ)ik, and
the errors εik are confounded. This has no harmful consequence as we do not estimate each parameter

2We add this third factor (presentation of stimuli) which was not in the original study not as a criticism
but to highlight the effect of the design on the correlation structure of a CRE-MEM.
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Table 4.1: Link between random units and the type of variables. A cross means that a
random interaction (i.e. an interaction between the random effect define by the row and
the fixed effect defined by the column) is estimable or allowed in a CRE-MEM with a
fully balanced design.

intercept VP VS VPS VM VO
Participants X X X X X
Stimuli X X X X X
Participants:Stimuli X X X

(third line), ωm, (ωψ)mk, (ωα)mj and (ωψα)mkj; and effects associated to the participants-
stimuli interactions and to the error term (fourth line), (πω)im and (πωψ)imj. Note that
the interaction between sampling units and a fixed effect is only feasible if the sampling
units are evaluated in several levels of the fixed effect. The correlation structure of this
CRE-MEM is implied by the multivariate distribution of the random effects (defined in
the three last lines of Equation 4.2). The correlation structure is de facto more complex
than the one for rANOVA and the different choices and assumptions are discussed in
Section 4.5.

Note that the effects on the fourth line are seldom if ever presented or used in the
context of CRE-MEM and correspond to the random effect associated to the interaction
participant-stimuli and model the assumption that some participant will have a better
response with some particular stimuli (or vice versa). With CRE-MEM, the dichotomy
of “between-participant” variables and “within-participant” variables used in rANOVA is
insufficient and, in Section 4.4, we present a classification of 5 types of variables for the
CRE-MEM.

4.4 Classification of Variables for the CRE-MEM
In the ANOVA framework, explanatory variables are split into “within-participant” vari-
ables and “between-participant” variables. Often between-participant variables (that
we will call VP ) represent a feature of the participants, like their sex, and the partici-
pants can be or is measured in only one level of the between-participant variables. The
within-participant variables often represent the feature of the experimental manipula-
tions (VM) which means that the participants can be measured in multiple levels of a
within-participant variables. This classification is feasible since there is only one sampling
unit, the participants. Based on this dichotomy, we know that only within-participant
variables may interact with the sampling unit to create random effects.

As viewed in the previous Section, many experiments in psychology are more complex
as they cross one random sample of participants and one random sample of stimuli (and
therefore must be analysed with CRE-MEM). In that setting, 3 random units are actually
present: the participants, the stimuli, and their interactions. In order to know which
models are at least feasible (or more precisely, which random effects can be included in
the model), we have to know which explanatory variables may interact with which random
units. The aim of this section is to provide a classification of variables that answers this
question and to illustrate it with a few examples.

In summary, for CRE-MEM, as in rANOVA, some variables are either VP or VM as
they specify a feature of the participants or of the manipulation. By symmetry with VP ,
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there might be variables that specify a feature of the stimuli, called VS, and variables that
specify a feature of the interaction of participants and stimuli, that will be called VPS.
Finally, some variables designate a feature of the specific occurrence, or observation, and
will be called VO. In more detail, here is the list of potential types of variables:

1. VP : variables that specify a feature of the participants. The typical example is the
sex of the participants. It can also happen that for experimental reasons, partic-
ipants are (randomly) assigned to a single experimental condition, like a learning
method in education or given a specific instruction in social psychology. Experimen-
tally, this condition becomes a feature of the participant and thus the corresponding
variable is also classified as VP . In Equation 4.2, the effects αj come from a VP vari-
able and is the race in the experiment of Wilson et al. (2017). This type of variables
reduces to a between-participant variable in the rANOVA setting.

2. VS: variables that specify a feature of stimuli, in the same way as VP specify features
of participants. The typical example is the valence of an image or the characteristic
(frequency, type, . . . ) of a word. In Equation 4.2, the effects φl come from a VS
variable and correspond to the actual size of stimuli.

3. VM : variables that specify a feature of the experimental manipulation. The experi-
menter has usually the ability to manipulate it independently of the participants and
of the stimuli, showing several different conditions to the same pair participants-
stimuli. Examples are the hemifield of presentation of a target, the lightning or
surrounding sound conditions. In Equation 4.2, the effects ψk come from a VM vari-
able and correspond to the presentation of the stimuli. This type of variable reduces
to the within-participant variables in the rANOVA.

4. VPS: variables that specify a feature of the interaction between a participant and
a stimulus, and therefore that cannot vary for a given pair participant-stimulus.
Often, this type of variables is the results of constraints on the experimental design:
if the same participant cannot see the same stimulus in several conditions, this factor
is then specific for each pair of participant and stimulus and become a variable VPS.
For example, if only the high-frequency or only the low-frequency of an image is
shown, for a given image, half of the participants will see its high-frequency version
and the other half its low-frequency version, and conversely for another image.
As an additional example in linguistics, in a novel word experiment design half
the participants learn half the words with spelling and the other half with only
the spoken input, and the association between one word and a level is balanced
across participants. In the experiment of Wilson et al. (2017), if the participants
were asked, afterward, to evaluate a characteristic of the stimuli, like the level of
masculinity, and use this measure as a predictor, this variable would be of type VPS.

5. VO: variables that specify a feature of the specific occurrence or observation. It may
be a physiological or physical measure taken at the precise time of the measures
of the response (for a given participant subject to a given stimulus). The position
of the trial in the experiment, or the RT to the previous stimulus fall also in this
category.

As a rule, for any factors or variables, if the random unit is measured in several of its
levels, then a random interaction between this variable and the random unit is estimable,
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Table 4.2: List of 5 typical experimental designs involving participants and stimuli that
will be exemplified in this article (column Use: ”Formu” meaning that its R formulas are
given in the Appendix D.5 for all correlation structures, and ”Simul” means that it is
used in the simulation study of Section 4.6). The five different types of variables (VP , VS,
VM , VPS, and VO) are defined in Section 4.4 and the number of levels are given within
parentheses.

Model Variables Use
M1 Vp(2), Vs(2), Vm(2) Formu/Simul
M2 Vp(3), Vs(3), Vm(3) Simul
M3 Vp(3), Vs(3), Vm(3), Vm(2) Formu
M4 Vp(3), Vs(3), Vm(3), Vps(2) Simul
M5 Vp(3), Vs(3), Vm(3), Vm(2), Vps(2), Vo(2) Formu

i.e. it can be included in the CRE-MEM. This random interaction is interpreted as a
random slope. As a result, the random slope of a Vp variable is only estimable for the
stimuli, the random slope of a VM variable is estimable for the participants, the stimuli
and their interaction, etc. Table 4.1 gives a summary of the estimable random slopes for
the 5 types of variables. In this section, we discussed the cases where the variables are
factors. When dealing with one or more continuous variables, the classification of variables
and its consequences on the correlation structure of the data are the same. However,
especially in the presence of interaction, a special care is needed in the interpretation of
the results (e.g. depending if the variables are centred or not). Moreover, we believe that
this classification and the approach described above can be extended for cases with more
than 2 random units.

Finally, note that in rANOVA, the “wide” format of the data makes a clear distinction
between the representation of the within-participant and between-participant variables.
In Appendix D.2, we extend this representation for the 5 types of variables of the CRE-
MEM.

4.5 Several Families of Correlation Structures
In this section, we describe the correlation structures that are discussed in the literature
and propose a new one in Section 4.5.5. Several goals are pursued. First, to list the
major models and to give them a name, second to link them with R code of the lme4
package (Bates et al., 2015), third to explain their assumptions and fourth to compare
them theoretically. In Section 4.6, we will compare them based on simulations so that
some guidelines can be learned.

Note first that all correlation structures discussed in the literature assume indepen-
dence between the random effects associated with (a) participants, (b) stimuli and (c)
their interactions. For the model of Equation (4.2), it implies that for all following pro-
posals, the random effects on the second line are independent with the random effects on
the third line and the fourth line. This is a minor assumption if the interaction between
participants and stimuli is included but might be questionable if not.

Second, each of the proposal may include effects coming from the interaction partic-
ipants:stimuli even if the authors who originally described these correlation structures
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Table 4.3: Number of parameters for the correlation structure for the five models described
in Table 4.2 and for all the random structures defined in Section 4.5. A plus sign describe
a random structure that includes the interaction participants:stimuli.

M1 M2 M3 M4 M5
without interaction participants:stimuli

RI 2 2 2 2 2
RI-L 8 8 16 16 64
MAX 20 90 342 342 5256
ZCP 8 18 36 36 144
gANOVA 8 8 16 16 64

with interaction participants:stimuli
RI+ 3 3 3 3 3
RI-L+ 9 9 19 17 71
MAX+ 21 91 352 343 5311
ZCP+ 9 19 40 37 154
gANOVA+ 9 9 19 17 71

did not include them. Those interactions terms model if some participants are especially
good/bad with a particular stimulus. Below, a “+” sign in the name of a correlation
structure indicates its inclusion.

In CRE-MEM, the optimization process is defined for parameters which are function
of the elements of the correlation structure (Bates et al., 2015). So, having more free
parameters in the correlation structure imply a more difficult optimization process and
more convergence errors of the algorithm. And, as for any statistical model, including
additional parameters makes the model “less wrong” (in the sense of the goodness of
fit) at the price of reducing its parsimony. In practice, for CRE-MEM, the usual trade-
off between parsimony and goodness of fit is disturbed by the convergence error of the
algorithm. For the five models presented in Table 4.2, we show in Table 4.3 the number of
parameters for each correlation structure presented next. It clarifies the huge difference
between the proposed correlation structures.

Moreover, the replicability of the findings has become a major worry in many fields.
The choices carried out when using CRE-MEM should reflect this tendency. For that
purpose, the correlation structure should have good properties: specially to have the
expected results of the analysis reproducible through experiments, be robust to some
misspecification of the model and have a high rate of convergence. If the model is used
for testing in a frequentist approach, a good choice will exhibit a type I error rate close
to the nominal level under the null hypothesis and, at the same time, a high power under
the alternative.

4.5.1 The Correlation Structure with Random Intercepts (RI)
In this simplest case, the correlation structure has only a random intercept for the par-
ticipants and a random intercept for stimuli. These intercepts are not correlated, which
means that only 1 variance parameter per random unit is estimated regardless of the
number of fixed effects, hence the value of 2 in the first line and 3 in the sixth line of
Table 4.3. All the interaction terms in the second, third and fourth lines of Equation (4.2)
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are removed, or equivalently, their variances are set to zero.
For two factors f1 and f2 and the participant and stimulus identifier PT and ST, the

typical formula of RI using the lme4 package is:

R> lmer(y ˜ f1*f2 + (1|PT) + (1|SM), data = mydata)

and for th RI+ structure:

R> lmer(y ˜ f1*f2 + (1|PT) + (1|SM) + (1|PT:SM), data = mydata)

Full examples are provided in Appendix D.5. For space reason and in order to focus
on the part of interest, in the main text we will summarize the formulas. For the RI and
the RI+, it becomes:

R> lmer(y ˜ [...] + (1|PT) [...] )

In lay language, this correlation structure just suppose that some participants are
better than others on each measurement, and that some stimuli are more difficult than
others for all participants alike. Although this correlation structure is used in the liter-
ature, in most cases, the true correlation structure will most probably be more complex
that only random intercepts and more random effects are estimable. Choosing this corre-
lation structure will reduce the reproducibility of the results with a gain in parsimony we
do not really need. RI is probably too simple for most applications and does not provide
credible inference (Barr et al., 2013).

4.5.2 The Correlation Structure with Random Intercepts at each
Level (RI-L)

One way to view the rANOVA model (as in Equation (4.1)) is to think that it incorpo-
rates all interactions between the random effect of the participant (πi) and the within-
participant fixed effects (only µ and αj here), to produce all possible random effects (here
πi and (πψ)ik). Bates et al. (2015) suggest following the same idea for CRE-MEM, starting
with the random effect of both participants (πi) and stimuli (ωm). This random structure
corresponds to random intercepts and slopes that are IID and spherical (πi ∼ N (0, σ2

π),
(πψ)ik ∼ N (0, σ2

πψ), (πφ)il ∼ N (0, σ2
πφ) and so on), and independence between them, for

all the elements in the 2nd, 3rd and 4th lines of Equation (4.2). The typical formula of
RI-L using the lme4 package is:

R> lmer(y ˜ [...] + (1 | PT) + (1 | PT:f1) + (1 | PT:f2)
+ (1 | PT:f1:f2) [...] )

The RI-L correlation structure keeps a relatively low number of parameters which does
not increase with respect to the number of levels of the factors (see Table 4.3).

This may seem the natural extension of rANOVA, however with the same number of
parameters, gANOVA includes all the correlation structures that can be obtained with
RI-L and strictly more. Therefore, the likelihood (and criteria like AIC and BIC) will
always be better or equal when using gANOVA instead of RI-L. More details on the
difference between the two correlation structures are given in Section 4.5.5. The numerical
optimisation is also easier for gANOVA compared to RI-L, as exemplified in Appendix D.4.
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4.5.3 The ”Maximal” Correlation Structure (MAX)
The “maximal” correlation structure is suggested by Barr et al. (2013) and it is defined
by including all possible random effects associated with the participants on one side and
all possible random effects associated with the stimuli on the other side. Moreover, Barr
et al. (2013) let also a maximal correlation structure between random effects, which means
that all random effects can correlate with each other (within the same random unit), or
said differently, the covariance matrix of the random effects is full and unstructured. The
typical formula of MAX using the lme4 package is:

R> lmer(y ˜ [...] + (f1*f2 | PT) [...] )

This correlation structure may seem the appropriate choice without prior information
on the correlation structure, but the problem is that it is not parsimonious enough except
for the smallest models, see Table 4.3. Note that the authors did not specified explicitly
how to handle factors with more than two levels. Moreover, the actual optimization
algorithms often do not converge even for small models (see Table 4.4). It might therefore
be used when the design has only one IV but is probably not suited for experiments with
two variables or more.

4.5.4 The Zero-Correlation Parameter Correlation Structure (ZCP)
The ZCP (Bates et al., 2015) also includes all the random effects associated with stimuli
and with participants. Unlike the MAX model, the ZCP model does not include correla-
tions between the random effects. This means that one variance parameter is estimated
for each effect, but no correlation is assumed. When one or more factors have 3 or more
levels, there is a twist and the number of variance parameters that are estimated for each
random part will be equal to the number of degree-of-freedom of the corresponding fixed
factor (or interaction of factors). Said differently, variance parameters are attached to
contrasts of the factor or interaction of factors and not to the factors themselves.

For two factors f1 and f2 and the participant identifier PT, one first transforms the
factors f1 (e.g. with 4 levels) and f2 (e.g. with 3 levels) into coding variables x1a, x1b and
x1c, respectively x2a and x2b (more information about the necessity of transformation
into coding variable is in the Appendix D.5). Then the typical formula using the lme4
package is, for ZCP:

R> lmer(y ˜ [...] + ((x1a + x1b + x1c)*(x2a + x2b) || PT) [...] )

This correlation structure is relatively parsimonious when all factors have exactly two
levels, but the number of parameters will increase with respect to the number of levels
of the factors (see Table 4.3). It has the drawback to be dependent on the choice of
the coding of the factors. This correlation structure can be viewed as a workaround to
force lme4 not to add correlations between random effects, but that this workaround does
not give the expected results with factors that have 3 or more levels. Although, we do
not expect a huge difference in practice, the maximum likelihood and the inference will
depend on the choice of the coding variables (or contrasts), even when they are forced to be
orthonormal. In many applications, the choice of the coding variable does not correspond
to any hypothesis and is therefore arbitrary. Moreover, this may be an obstacle for the
reproducibility of the data analysis because it will be challenging to report the all coding
variables of the factors and their interactions.
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4.5.5 The Random Structure of the Generalized ANOVA (gANOVA)
In order to generalize rANOVA to CRE-MEM, gANOVA first assumes a saturated model
with all random effects, the one associated to participants, with stimuli and with their
interaction. As in the experimental design literature, the covariance structure of random
effects is assumed to be minimal, i.e. each random effect is independent from the others,
and spherical. A correlation structure with spherical random effects will have random
effects that share the same variance for each level of the same factor; which means that
the number of parameters will not increase with respect to the number of levels (see
the lines gANOVA in Table 4.3 for models M1 vs M2). The model behind gANOVA
is the same as RI-L suggested in Bates et al. (2015), as exemplified in Equation 4.2,
and the number of parameters is also identical (compare the lines RI-L and gANOVA in
Table 4.3). The difference with RI-L is that some constraints are assumed on the random
effects. In Equation 4.2, those constraints are written: ∑k(πψ)ik = 0 ∀i, ∑l(πφ)il = 0 ∀ i,∑
k(πψφ)ikl = 0 ∀ i, l, and ∑l(πψφ)ikl = 0 ∀ i, k. For the algorithm, those constraints are

simply implemented by transforming the factors into orthonormal coding variables and
forcing them to share the same variance parameter (within each factor).

It is not possible to use lme4 to estimate the gANOVA model, as it needs to satisfy both
the constraints of equality of variances for each level and to use coding variables for the
random interactions. However, a simple modification of the lmer function implemented in
the gANOVA package ( https://github.com/jaromilfrossard/gANOVA) allows to perform this
optimization. For two factors f1 and f2 and the participant identifier PT, the gANOVA
is performed using the gANOVA package and the formula:

R> gANOVA(y ˜ [...] + (1 | PT | f1*f2) [...] )

The justification for this correlation structure is that it is much more in line with the
tradition of experimental design. Indeed, it is exactly as defined by Cornfield and Tukey
(1956) for ANOVA including one or several random effects (see Appendix D.1). Moreover,
one of the first tools to obtain p-values for balanced experiments where there is crossing
of random samples of participants and stimuli was the quasi-F statistic (Winer, 1962).
This statistic is based on sums of squares which are easy to compute after averaging over
the participants and over the stimuli. The quasi-F statistic follows an approximative F
distribution under some assumptions (Clark, 1973). These assumptions are identical to
the one made in rANOVA (independence and homoscedasticity of the random effects). For
balanced data, the model and the implied correlation structure are the same for quasi-F
and CRE-MEM based on gANOVA (but the statistic, t-value and p-value are computed
differently) and we expect to obtain quite similar results (very close p-values). However,
gANOVA generalizes naturally to non-balanced designs since it is a mixed effect model.

Secondly, as mentioned in Section 4.5.2, the possible correlations between all responses
assumed by RI-L are only a (strict) subset of the ones with gANOVA. For some data, both
methods lead to the same variance-covariance matrix of the response, but its decomposi-
tion into variances of random effects are different. Which is similar to say that, in Equa-
tion 4.2, all the variances and covariances of the responses yimk are the same for gANOVA
and RI-L, but its decomposition into variances of random effects πi, . . . , (πωψ)imk is
different, due to the sum-to-zero constraints in gANOVA. In lay terms, without these
constraints, higher order interaction random effects put restrictions on the variance of
the random effects of lower interaction. Pehaps surprisingly, this imply that the possible
variances and covariances of the responses are reduced in RI-L (compared to gANOVA),
and for some data the variance-covariance matrix of the response will be different between

https://github.com/jaromilfrossard/gANOVA
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the two methods. It often implies a solution at the boundary of the domain of definition
(one or several variances set to zero) in RI-L during the optimization. In those cases,
RI-L and gANOVA do not share the same solution and gANOVA has always a smaller
deviance (and AIC, BIC, . . . ) which suggests a better fit.

The equations below show the relationship between the variance parameters of both
parametrization for a model with one variable:

σ2
RIL;i = σ2

gANOV A;i − aσ2
gANOV A;F

σ2
RIL;F = σ2

gANOV A;F

σ2
RIL;ε = σ2

gANOV A;ε,

where σRIL;i and σgANOV A;i are the standard deviation of the random intercepts for both
parametrizations, σRIL;F and σgANOV A;F are the standard of the random slopes (partici-
pant:F), and σRIL;ε is the standard deviation of the error term. a is positive constant that
depends on the number of levels of the factor F: a = 1− 1/(# levels). See Appendix D.4
for the full derivation of this example.

Several comments can be made. First, one has to be aware that the interpretation
is different between the two covariance structures. Second, if σ2

gANOV A;i − aσ2
gANOV A;F is

positive, RI-L and gANOVA will produce the same variance-covariance of the response
and the same deviance. The fit is exactly the same. However, there will cases where this
term is negative. In that case, RI-L cannot attain the optimum and is forced to set a
variance to zero (and to adjust the two other ones), leading to a poorer fit compared to
the solution of gANOVA. This leads to the conclusion that gANOVA is strictly better
than RI-L.

Concerning now the comparison between gANOVA and ZCP, they are the same model
for designs that have factors with exactly two levels. But it is not the case when at
least one factor has 3 levels or more. For this type of factors and when they interact
with random effects, gANOVA has the assumption of sphericity which imposes the same
variance parameters for each coding variables of the factors. On the other hand, ZCP
will have a new variance parameter for each new coding variable and adding these new
parameters has two drawbacks. First, the number of parameters to estimate increases
which implies more variable estimations (see Table 4.3). Moreover, these new parameters
are usually not dictated by theoretical ground but more by the convenience of an existing
R formula. Secondly, the random structure, the maximum likelihood and the inference
depend on this arbitrary choice of the coding variable, even when they are forced to be
orthonormal. There are infinitely many groups of coding variables that may be used for a
single dataset and for each of which ZCP will give a different p-value. This arbitrariness in
a model that is precisely design-driven is not desirable. On the other hand, the sphericity
assumption in gANOVA keeps one variance parameter for all coding variables of a given
factor (or interaction). This will reduce the number of parameters and the arbitrariness
of the coding of factors by being independent to the choice of the coding of the factors.

Finally, the constraints used in gANOVA (almost) orthogonalize the random effects
(they would be orthogonal if fixed) such that the parameters have a small mutual influence
in comparison with RI-L. Figure D.3 shows an example of the likelihood within the space of
the parameters. For the same data (one sampling unit, one VM variable and replications),
and fitting random intercepts and random slopes, we see that the two ridges defining the
two profile likelihoods cross almost at 90◦ at the optimum in the gANOVA case but is
far more inclined for RI-L. This suggests less dependency between the parameters and
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a better optimization process for gANOVA. In higher dimension, it is known that all
optimization suffers from the curse of dimensionality, and the better independence of
gANOVA parameters is clearly an asset.

4.5.6 The Correlation Structure Based on PCA (CS-PCA)
Bates et al. (2015) proposed a heuristic to find the appropriate correlation structure. This
correlation structure has a data-driven approach and therefore changes even between two
experiments sharing the same design. To compare it to the previous methods, we summa-
rize the proposition of Bates et al. (2015) by a fully defined algorithm in Algorithm 4. The
idea behind this method is to use PCA on the estimated maximal correlation structure
(from the MAX model) to estimate the dimensionality of the random effects; by assum-
ing that the true correlation structure is of lower dimension than the one defined by the
MAX model, we restrict to a subspace in which it is hoped that most of the variability of
the random effect lives. Then by deleting random effects of the model (suppressing the
higher-level interaction first), we match the correlation structure to the estimated dimen-
sionality. Then based on the new maximal dimensionality, Bates et al. (2015) proposed to
reduce the number of parameters based on test or goodness of fit; first we decide whether
to drop the covariances between random effects and select the random structure based on
test, then we decide whether to drop random effects one by one beginning with the higher
interaction levels. We stop this procedure when it does not improve the model anymore.
The selected random structure is then compared to a last one by adding or subtracting
the covariance between random effects.

Algorithm 4 Correlation structure based on PCA
1: Choose a model selection procedure P.
2: Estimate the model based on MAX Smax.
3: for participants and stimuli do
4: Perform PCA to find the dimensionality rSmax of the random effects.
5: Drop random effects with higher interaction levels to match rSmax .
6: Define the new random structure S +

PCA.
7: Drop covariance between random effects and define this random structure S −

PCA.
8: Choose between S +

PCA and S −
PCA using P. The chosen random structure is called

Sreduced.
9: while P suggests the smaller correlation structure do

10: S 0
reduced is defined by dropping from Sreduced the random effect of the higher

interaction levels.
11: Choose between Sreduced and S 0

reduced using P.
12: Update Sreduced by the previous choice.
13: Given the choice made in 8, add or drop covariance to Sreduced to create S 1

reduced.
14: Choose between Sreduced and S 1

reduced using P.

This algorithm will choose a correlation structure that is a subset of the correlation
structure defined by MAX. However, it is possible to imagine new algorithms that choose
a correlation structure that is a subset of ZCP, RI-L or gANOVA correlation structure.
Moreover, being based on a MAX correlation structure, CS-PCA will have problems in
complex designs.
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Table 4.4: Percentage of convergence error for all simulations (Nsim = 4000) under the
null hypothesis. Results are split by rows according to the simulation settings based on
(1) the sample size for stimuli, (2) the true correlation between random effects, (3) the
presence/absence of random effects associated with the participants:stimuli interaction
and (4) the size of the design. The columns represent the type of estimation: all 7 correla-
tion structures are assumed with (+) and without (-) the interaction participants:stimuli.
The dash ”-” indicates settings without simulations. MAX and to a lesser extent CS-PCA
present problems of convergence.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

- + - + - + - + - + - + - +

M1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 12.7 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7no PT:SM
M4 0.0 0.0 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 0.0 - -
M1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 13.4 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4sp

he
ri

c.

PT:SM
M4 0.0 0.0 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 0.0 - -
M1 0.0 0.0 0.0 0.0 4.4 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 29.7 35.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 8.2no PT:SM
M4 0.0 0.0 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 0.0 - -
M1 0.0 0.0 0.0 0.0 8.8 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M2 0.0 0.0 0.0 0.0 39.1 34.0 0.0 0.1 0.0 0.0 0.0 0.0 10.0 9.3

18

co
rr

.

PT:SM
M4 0.0 0.0 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 0.0 - -

M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0no PT:SM M2 0.0 0.0 0.0 0.0 15.8 19.2 0.1 0.0 0.0 0.0 0.0 0.0 1.0 2.9
M1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sp
he

ri
c.

PT:SM M2 0.0 0.0 0.0 0.1 14.9 15.4 0.1 0.0 0.0 0.0 0.0 0.0 2.4 2.5
M1 0.0 0.0 0.0 0.0 3.7 11.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0no PT:SM M2 0.0 0.0 0.0 0.0 30.0 41.5 0.2 0.0 0.0 0.0 0.0 0.0 7.2 14.2
M1 0.0 0.0 0.0 0.0 10.4 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

36

co
rr

.

PT:SM M2 0.0 0.0 0.0 0.0 41.0 34.6 0.0 0.1 0.0 0.0 0.0 0.0 16.4 14.8

Note that even if the goal of the algorithm is to match the data, some design-driven
components persist, like reducing the higher interaction levels first or, keeping the dimen-
sion of the random effects based on the design even after a PCA.

It is not possible to produce meaningful theoretical comparison with the other cor-
relation structures discussed above and we will compare it through simulations in Sec-
tion 4.6. However, the correlation structure CS-PCA, being mainly data-driven, may
seem to come from a different family than the design-driven random structure RI-L, ZCP,
MAX or gANOVA. However, all correlation structures can be summarized as a function
or algorithm of the design and of the data. The main difference is that the procedures
RI-L, ZCP, MAX and gANOVA will mostly use information about the design to select the
correlation structure and CS-PCA will also use information from the data. And, again,
they will all be false, and the goal is to select the most useful one.

4.6 Simulation Study
This simulation study is designed to compare the above correlation structures when per-
forming tests on the fixed effects, which is the principal interest of researchers. Our focus
are the type I error rate and the convergence rate of the methods. The type I error rate is
the average number of rejected null hypotheses per simulation settings. It should be close
to the nominal level, that is set here to α = 5%; a lower value indicates a conservative
method and a higher value indicates a liberal one. Moreover, to evaluate the power of
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Table 4.5: Type I error rate for three variables of the common model (M2 of in Table 4.3).
Correct methods should be close the the nominal level α = .050. The first column indicates
the true correlation between random effects (homoscedastic or correlated). The second one
indicates if the true model is generated with the interaction participants-stimuli. The third
column indicates if model is estimated assuming the interaction participants:stimuli (+)
or not (-). The RI and CS-PCA correlation structures show huge deviations from the
nominal level. Confidence intervals are computed using Agresti and Coull (1998). Bold
font corresponds to nominal level (5%) within the confidence interval, red font corresponds
to confidence interval above the nominal level and italic font corresponds to confidence
interval below the nominal level.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA
Vs

.136 .051 .051 .049 .052 .050 .052- [.126;.148] [.044;.058] [.044;.059] [.043;.056] [.045;.059] [.044;.058] [.045;.059]

.136 .053 .053 .053 .054 .053 .055no PT:SM + [.126;.148] [.047;.061] [.046;.061] [.046;.060] [.048;.062] [.047;.061] [.048;.062]

.139 .054 .059 .053 .058 .054 .058- [.129;.150] [.047;.061] [.052;.068] [.046;.060] [.051;.065] [.047;.061] [.051;.066]

.139 .054 .059 .053 .058 .054 .058sp
he

ric
.

PT:SM + [.129;.150] [.047;.061] [.051;.067] [.047;.060] [.051;.065] [.047;.061] [.051;.066]

.134 .050 .056 .046 .050 .050 .050- [.124;.145] [.044;.058] [.048;.065] [.040;.053] [.043;.057] [.044;.058] [.043;.057]

.134 .052 .050 .048 .052 .052 .052no PT:SM + [.124;.145] [.046;.060] [.042;.060] [.042;.055] [.046;.060] [.046;.060] [.045;.060]

.140 .050 .055 .044 .053 .050 .056- [.129;.151] [.044;.058] [.047;.065] [.039;.051] [.046;.060] [.044;.058] [.049;.065]

.140 .051 .051 .045 .053 .050 .057

co
rr

.

PT:SM + [.129;.151] [.044;.058] [.043;.060] [.039;.052] [.046;.060] [.044;.058] [.050;.066]

Vp:Vm
.723 .059 .065 .077 .069 .058 .077- [.709;.737] [.052;.066] [.057;.074] [.069;.086] [.061;.077] [.051;.066] [.069;.085]
.809 .055 .064 .075 .063 .054 .068no PT:SM + [.797;.821] [.048;.062] [.056;.073] [.067;.083] [.056;.071] [.048;.062] [.060;.076]
.782 .054 .059 .072 .064 .054 .066- [.769;.795] [.048;.062] [.052;.068] [.064;.081] [.057;.072] [.048;.062] [.059;.074]
.824 .054 .059 .072 .064 .054 .067sp

he
ric

.

PT:SM + [.812;.836] [.048;.062] [.052;.068] [.064;.080] [.057;.072] [.048;.062] [.060;.076]

.698 .059 .055 .075 .067 .059 .077- [.684;.712] [.052;.067] [.047;.064] [.068;.084] [.060;.075] [.052;.067] [.068;.086]

.794 .053 .053 .072 .063 .053 .075no PT:SM + [.781;.806] [.047;.061] [.044;.062] [.064;.080] [.056;.071] [.047;.061] [.067;.084]

.770 .054 .058 .070 .064 .054 .073- [.757;.783] [.048;.062] [.049;.068] [.062;.078] [.057;.072] [.048;.062] [.065;.083]

.809 .054 .058 .069 .064 .054 .073

co
rr

.

PT:SM + [.797;.821] [.047;.061] [.049;.067] [.062;.078] [.056;.072] [.047;.061] [.065;.083]

Vp:Vs:Vm
.250 .075 .036 .103 .087 .075 .409- [.237;.264] [.067;.083] [.030;.043] [.094;.112] [.079;.096] [.067;.083] [.394;.425]
.446 .051 .040 .092 .070 .051 .249no PT:SM + [.431;.462] [.045;.059] [.034;.047] [.083;.101] [.063;.079] [.045;.059] [.235;.263]
.360 .049 .039 .085 .060 .049 .195- [.345;.375] [.043;.056] [.033;.046] [.077;.094] [.053;.068] [.043;.056] [.183;.208]
.463 .049 .040 .085 .059 .049 .189sp

he
ric

.

PT:SM + [.448;.479] [.042;.056] [.034;.047] [.076;.094] [.052;.067] [.042;.056] [.177;.202]

.245 .083 .026 .113 .086 .083 .457- [.232;.259] [.075;.092] [.020;.032] [.104;.124] [.078;.096] [.075;.092] [.441;.473]

.420 .060 .028 .103 .069 .060 .494no PT:SM + [.405;.436] [.053;.068] [.022;.035] [.094;.113] [.062;.077] [.053;.068] [.478;.511]

.351 .058 .028 .106 .068 .058 .502- [.337;.366] [.051;.065] [.022;.036] [.097;.116] [.061;.077] [.051;.065] [.485;.519]

.448 .057 .027 .106 .067 .056 .493

co
rr

.

PT:SM + [.433;.463] [.050;.064] [.022;.034] [.097;.116] [.059;.075] [.050;.064] [.477;.510]

the tests, we recorded, under the alternative hypothesis, the average number of true pos-
itive (the empirical power). A higher number of true positive indicates a more powerful
method.
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Table 4.6: Type I error rate for three variables of the common model (M1 of in Table 4.3)
with 36 stimuli. Correct methods should be close the the nominal level α = .050. The
data are generated without random intercepts. In this setting, the type I error rates of RI-
L deviate strongly from the nominal level, whereas gANOVA stay close to it. Confidence
intervals are computed using Agresti and Coull (1998). Bold font corresponds to nominal
level (5%) within the confidence interval, red font corresponds to confidence interval above
the nominal level and italic font corresponds to confidence interval below the nominal level.

RI-L RI-L+ gANOVA gANOVA+
no PT:SM .005 [.003;.008] .005 [.003;.008] .046 [.040;.054] .046 [.040;.054]corr. PT:SM .006 [.004;.008] .006 [.004;.008] .049 [.043;.056] .049 [.043;.056]
no PT:SM .006 [.004;.008] .006 [.004;.008] .051 [.045;.058] .051 [.045;.058]Vp

spheric. PT:SM .005 [.003;.008] .005 [.003;.008] .039 [.033;.045] .039 [.033;.045]

no PT:SM .119 [.109;.129] .119 [.109;.129] .047 [.041;.054] .047 [.041;.054]corr. PT:SM .118 [.108;.128] .118 [.108;.128] .050 [.043;.057] .050 [.043;.057]
no PT:SM .117 [.107;.127] .117 [.107;.127] .046 [.040;.054] .046 [.040;.054]Vm

spheric. PT:SM .107 [.098;.117] .107 [.098;.117] .051 [.044;.058] .051 [.044;.058]

no PT:SM .114 [.105;.125] .114 [.105;.125] .052 [.045;.059] .052 [.045;.059]corr. PT:SM .114 [.104;.124] .113 [.104;.123] .050 [.044;.058] .050 [.044;.058]
no PT:SM .113 [.103;.123] .113 [.103;.123] .047 [.041;.054] .047 [.041;.054]Vp:Vs

spheric. PT:SM .111 [.101;.121] .110 [.101;.121] .050 [.044;.058] .050 [.044;.058]

4.6.1 Simulating the Datasets
We choose several simulation settings in order to match likely experimental designs and
4000 samples were simulated in order to have small confidence interval of our metrics.
The settings vary according to 3 different designs, 2 different sample sizes, 2 different
correlations of random effects, and the fact that random effects for the interaction partic-
ipants:stimuli are included or not.

The 3 experimental designs are: a small design with only 2 levels per factor (M1 in
Table 4.3), a rather common design with 3 levels per factor (M2 in Table 4.3) and a larger
design with more variables (M4 in Table 4.3). The designs M1 and M2 have variables of
type VP ,VS, VM and M4 has an additional variable of type VPS.

Two correlations between random effects are used for the generation of the data. In
the first case, the random effects are spherical (spheric.) and in the second case, the
random effects are fully correlated (corr.); the fully correlated covariance matrix is such
that random effects spanned a space of half of the dimension of the random effects (but
not in the canonical directions). In order to give more importance to the main effects, the
standard deviations of random effects are halved when increasing an order (or degree) of
interaction. Moreover, all standard deviations of the random effects associated to stimulus
and interaction participants:stimuli are shrunken by 0.9, respectively 0.8. Each design is
simulated with random effects associated to the interaction participants:stimuli (PT:SM)
and without (no PT:SM). Moreover, the small (M1) and common (M2) designs are sim-
ulated with 2 different sample sizes: 18 participants and 18 stimuli, and 18 participants
and 36 stimuli. The large model (M4) was only simulated using 18 participants and 18
stimuli to reduce computation time.

Because decreasing variability as the interaction level increases favours RI-L correlation
structure, we also produce another simulation based on design M1. We change the variance
of random effects to highlight the difference of gANOVA and RI-L on the type I error
rate. In that case, we simulate data without random intercepts while all others standard
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Model M2: Type I error rate per simulation setting
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Figure 4.1: Display of type I error rates for all simulations setting of the model M2
(2 sample sizes × 2 correlations of random effects × 2 interactions in simulation × 2
interactions in estimation × 7 effects = 112 settings). The spherical correlation structures
(RI-L and gANOVA) produce results closer to the nominal level α = .050 represented by
a red line.

deviations of random effects are kept the same.
Finally, we produce a power analysis by increasing the fixed effect parameters. We first

estimated a maximum value for the parameter such that the empirical power exceeds 90%
for each effect. Then, each effect is tested by multiplying this value by .2, .4, .6, .8 and 1.
For factors with more than 3 levels, we let all fixed parameters increase simultaneously.
Moreover, to reduce the computation time, we increased all fixed effects simultaneously
(all main effects and all interactions).

4.6.2 Fitting of the Data
The randomly generated data are fitted using the correlation structures presented in Sec-
tion 4.5: the random intercepts (RI), the random intercepts at each level (RI-L), the max-
imal (MAX), the zero-correlation parameter (ZCP), the generalized ANOVA (gANOVA)
and correlation structure based on PCA (CS-PCA). ZCP is computed once with the de-
fault (non-orthonormal) “sum” coding (ZCP-sum) and once with a “polynomial” (and
orthonormal) coding (ZCP-poly) on the random effects. Each model is estimated with
(+) and without (-) assuming the random effects associated to the interaction participant-
stimulus. Moreover, the significance is evaluated using the type III test with Satterth-
waite’s approximation of the degrees of freedom using the lmerTest package (Kuznetsova
et al., 2017) and the restricted maximum likelihood (REML) estimation (Bates et al.,
2015). The larger model (M4) was only estimated using RI, ZCP and gANOVA to reduce
computation time.

To reduce the convergence error, each model is first optimized using the default BOBYQA
optimizer (Powell, 2009), then the Nelder-Mead optimizer (Nelder and Mead, 1965), then
from the optimx package (Nash and Varadhan, 2011) the nlminb optimizer and the
L-BFGS-B optimizer. We stop the procedure when a solution is found without convergence
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M2: type I error rate per effect
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Figure 4.2: Display of type I error rates of the model M2 split given the simulations
settings. The vertical lines indicate the range of all simulations within the condition. RI-
L and gANOVA are the closest to the nominal level α = .050 represented by a red dashed
line. The variable VM and its interaction produce higher deviation from the nominal level
across all correlation structures. No other simulation setting tends to have an effect on
the type I error rate.

error. If all optimizers fail, we declare a failure of convergence for that sample.

4.6.3 Evaluation of Simulation
Table 4.4 shows the percentage of samples with convergence error based on 4000 simulated
samples for all simulation settings (designs M1, M2 and M4 in Table 4.3). We deduce
that MAX is not scalable to even moderately sized designs because with only 3 levels per
factor we recorded up to 40% of convergence error. Moreover, our implementation of the
CS-PCA by Algorithm 4.5.6 did not reach a low number of convergence error. For the
other correlation structure, we achieve a high convergence rate. This means that using
several optimizers seems a good practice to reduce convergence error.

Table 4.5 shows estimated type I error rates with their confidence intervals (Agresti and
Coull, 1998) for the common model (M2). The liberal type I error rates are shown in red
and the conservative ones in italic. The rates are computed using only the samples without
convergence error which might bias the results for MAX. One sees that RI and CS-PCA
are globally too liberal as their type I error rates show huge deviations from the nominal
level. The second observation is that including the interaction participants:stimuli does
not influence the number of convergence error (see “+” versus “-” in Table 4.4) nor
does it increase the type I error rate. Interestingly, the ZCP-poly and ZCP-sum exhibit
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Ratio to gANOVA of the observed power

Figure 4.3: Ratio of uncorrected average observed powers of RI-L, ZCP-sum and ZCP-
poly compared to the one of gANOVA. A method has larger power than gANOVA if the
ratio is bigger than one. The vertical lines indicate the range of all simulations within the
condition. ZCP-poly is liberal which explains that for lower effects size, gANOVA has a
slightly lower power than ZCP-poly, but the deviation reduces for higher effect sizes.

differences in their type I error rate. It implies that the choice of the coding variable of
the random effects will influence the results of the tests, which is not a desirable property.
The orthonormal coding (polynomial) has a better control on the type I error rate.

The type I error rate seems reasonably close to the nominal level for gANOVA, ZCP-
poly, and RI-L. To show the results more graphically, Figure 4.1 plots the type I error rates
of Table 4.5 for the five best correlation structures: RI-L, MAX, ZCP-sum, ZCP-poly,
and gANOVA. Best methods are those with points close to the red line. The superiority
of ZCP-poly compared to the ZCP-sum is noticeable. Moreover, gANOVA and RI-L
seem superior to ZCP-poly. By aggregating the results with respect to the simulation
settings (see Figure 4.2), we see that neither the type of effects, the sample size, the third
interaction in the data generation or estimation show influence on the type I error rate.
And, on average, gANOVA and RI-L perform better than ZCP-poly. On the other side,
the type of variable is influential on the type I error rate. We see that the variable VM
(or the interactions with this type of variable) induce type I error rates that deviate more
from the nominal level.

In the supplementary material, the results for all variables and the three models M1,
M2 and M4 are displayed. The above findings, including that gANOVA and RI-L are
closer to the nominal level than ZCP-poly and ZCP-sum, that the lack of influence of the
simulation setting and the higher deviation of the nominal level from test of variable VM
(and its interaction), are similar for all simulations, including for the larger design M4.
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Figure 4.4: Ratio of corrected average observed powers of RI-L, ZCP-sum and ZCP-
poly compared to the one of gANOVA. A method has larger power than gANOVA if the
ratio is bigger than one. The vertical lines indicate the range of all simulations within
the condition. In all simulation settings, no correlation structure performs better than
gANOVA.

The difference between gANOVA and RI-L is visible in Table 4.6 which shows simula-
tions with data from model M2 with a null standard deviation for the random intercepts.
For these datasets, gANOVA stay close to the nominal level but RI-L shows large devi-
ations (liberal or conservative). In addition to the theoretical remarks on the difference
between RI-L and gANOVA given in Section 4.5 and Appendix D.4, these simulations
show that gANOVA is strictly better than RI-L for reporting tests of fixed effects.

Moreover, the parsimony of gANOVA seems to endow it an advantage for the power
of the test. All the power results are provided in the supplementary material. Figure 4.3
summarizes the findings by computing the ratio of uncorrected average observed powers
of RI-L, ZCP-sum and ZCP-poly compared to the one of gANOVA. A method has larger
power than gANOVA if the ratio is bigger than one and smaller power if < 1. One sees
that ZCP-poly and gANOVA perform clearly better than ZCP-sum and that RI-L is close
to gANOVA due to the choice of the variance parameters of the random effects. As seen
in Figure 4.1, ZCP-poly has a higher type I error rate for most of the simulation settings
under the null hypothesis. However, by increasing the effect size, this deviation decreases.
This means that the better control of the type I error rate of gANOVA is not achieved at
the expense of the power of the test. Moreover, when the power is corrected by using a
critical value set at the nominal level (Figure 4.4), gANOVA performs better than ZCP-
poly. No other simulation settings have a big influence on the average difference of power
between the methods.
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4.7 Conclusion
Using CRE-MEM in psychology is a growing practice and there is a diversity of correlation
structures that are available and that are used. These correlation structures directly
depend on the design of experiment and we develop a classification of variables in order
to help users in the planning of the experiment and its analysis. All correlation structures
do not share the same advantages and there is no predefined tools to help researchers
select the appropriate correlation structure given the experiment. Depending on the goal
of the analysis some properties are more important to control than others.

In the case of hypothesis testing, we have shown that the gANOVA correlation struc-
ture has many desirable properties. Simulations show that it controls the type I error rate
without a loss in power even with misspecifications of the model. It also provides a high
rate of convergence and is scalable to complex datasets. Moreover, it is in line with the
experimental design tradition represented by the ANOVA/rANOVA framework, which is
helpful for the interpretation of the results for researchers familiar with the ANOVA.

Acknowledgement
We are particularly grateful for the assistance given by Audrey Bürki that greatly im-
proved this manuscript. She provided many comments coming from her extended reading
of this paper and her expertise with CRE-MEM; although any errors are our own.





Chapter 5

A General Re-sampling Method for
Multiple Tests in CRE-MEM

5.1 Introduction
In Chapter 4 we explain that experiments in psychology are often the results of the crossing
of a sample of participants and a sample of stimuli. For this type of design, CRE-MEM
is the general class of model that should be used as it considers both the variability
induced by the sampling of participants and stimuli. Moreover, crossing participants
and stimuli is also performed when recording the brain activity with EEG or fMRI.
However, in order to analyse EEG or fMRI data, we must perform thousands of tests,
and a multiple comparisons procedure should also be used to control the number of type I
errors (Bullmore et al., 1999). As presented in Chapter 1, permutation tests with multiple
comparisons procedures like the cluster-mass test (Maris and Oostenveld, 2007) or the
threshold-free cluster-enhancement (Smith and Nichols, 2009) on this type of signals are
very powerful and control the FWER as they wisely use correlation between tests. These
procedures are used with permutation but no general permutation method that considers
the effect of stimuli exists. In Bürki et al. (2018), we show that ignoring the effect of the
stimuli drastically increases the type I error rate in the univariate case and also increases
the FWER for comparison of signals and we proposed a re-sampling approach based on the
quasi-F statistic (Clark, 1973) using sums of squares. In the present Chapter, we propose
a general framework for re-sampling tests used for multiple comparisons procedure in
CRE-MEM that includes the approach presented in Bürki et al. (2018) and we recall our
simulation findings.

Several re-sampling methods exist for mixed model and Modugno and Giannerini
(2015) gives a nice overview of bootstrapping procedures. They consider a parametric
bootstrap, a case bootstrap and a residuals bootstrap as proposed by Carpenter et al.
(2003). However, for multiples comparisons using the same design, only re-sampling
procedures that conserve the links between tests are useful. Hence, separated generations
of data using parameter estimates, like the parametric bootstrap, are proscribed as it
destroys these temporal correlations (without an additional model of the correlations).
Moreover, the case bootstrap cannot be applied when crossing 2 samples as there is no
independent cases or sampling units. Hence, the following propositions are based on
re-sampling of the predictions of the random effects.

In the next Sections we propose a general framework that allows multiple comparisons
procedures with re-sampling method in CRE-MEM.
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5.2 The CRE-MEM Equation
In order to simplify the notation, we describe the model and the equations for only one
test (i.e. for one time-point) and the CRE-MEM equation is written as:

Y = Dη +Xβ +
J∑
j=1

K(j)∑
k=1

ZjkG
−
jkGjkγjk + ε, (5.1)

where Y is the response, β are the parameters of interest associated to the design X
and the nuisance variables are D associated to η. For each J random unit (e.g. j = 1
for participants, j = 2 for stimuli, j = 3 their interaction or more), we decompose the
random part into K(j) sets of independent random effects γjk ∼ N (0,Σjk). The Zjk
are matrices with 0 and 1 coding which random effect influences which observation. The
dummy coding of the Zjk matrices needs the contrasts G−jk depending on the assumed
correlation structure. The matrices Gjk and G−jk are either identity matrices (for RI-
L and the random intercepts) or orthonormal contrasts (for the random interactions in
gANOVA) such that G−jkGjk = Inj ⊗R1 and GjkG

−
jk = I, where nj is the the sample size

of the j random unit. Finally, we add the error term ε ∼ N (0, Iσ2).
Equation 4.2 can be expressed in the form of Equation 5.1. The lines 2 to 4 of Equa-

tion 4.2 are the random effects associated to the participants (line 2 in Equation 4.2 and
j = 1 in Equation 5.1) , to the stimuli (line 3 in Equation 4.2 and j = 2 in Equation 5.1)
and finally to their interaction (line 4 in Equation 4.2 and j = 3 in Equation 5.1). More-
over, the πi in Equation 4.2 code the random intercept associated to the participants of
the ith observation which correspond to the ith element of Z1,1γ1,1 where j = 1, k = 1
in Equation 5.1 as Gij is usually the indentity matrix for random intercept. Moreover,
the random interaction between fixed effects and the participants are also represented in
both equations as they are (πψ)ik, (πφ)il and (πψφ)ikl in Equation 4.2 and Z1,kG

−
1kG1kγ1,k,

j = 1, k = 2, 3, 4 in Equation 5.1. The same relationship between the two equations exists
for the stimuli and the interaction.

Then, the variance of the response is:

Var [Y ] = Ω = Iσ2 +
J∑
j=1

K(j)∑
k=1

ZjkG
−
jkGjkΣjkG

−
jkGjkZ

>
jk. (5.2)

The correlation structures, RI, RI-L, gANOVA or ZCP, assume a simple form for the
correlation matrices of random effects such that Σjk = Iσ2

jk.
In the model represented in Equation 5.1, we are interested by testing the null hy-

pothesis:

H0 : β = 0. (5.3)

5.3 The Estimation
Given the observation of y, an estimation of the full model produces the estimates β̂, η̂
and predictors γ̂jk and ε̂ such that:

y = Dη̂ +Xβ̂ +
J∑
j=1

K(j)∑
k=1

ZjkG
−
jkGjkγ̂jk + ε̂. (5.4)
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A first approach of the estimation can be performed assuming γjk as random and
using the mixed linear models framework. One needs to specify the correlation structure
which defines the Zjk’s, Gjk’s and Σjk’s. We saw in Chapter 4 that ZCP or gANOVA
are good choices when testing fixed effects in experiments with cross-random effects. The
estimation may be performed with the lme4 package for maximum likelihood (ML) or
restricted maximum likelihood (REML) (Bates and DebRoy, 2004; Bates et al., 2015) or
gANOVA (https://github.com/jaromilfrossard/gANOVA). The γ̂jk are usually referred to as
best linear unbiased predictor (BLUP). The predictions of the BLUP are shrunk towards
zero such that their empirical variance is typically smaller than σ2

jk. They must therefore
be modified if used in a re-sampling procedure (Morris, 2002).

Another approach is to estimate η, β and γjk as fixed effects using OLS. Contrary to
BLUPs, the OLS does not creates shrinkage of random effects (Efron and Morris, 1977).
Moreover, finding the OLS estimates is much less time consuming than the optimization
of a CRE-MEM.

In both cases, the higher interaction term of the random effects ((πωφ)imk in Equa-
tion 4.2) is usually confounded with the error term. It implies that its variance cannot
be estimated. It happens when the same setting (same participant, same stimulus and
same manipulation) is not repeated during the experiment and only one observation is
collected. In that case, this last interaction term is omitted for the estimation.

5.4 Re-Sampling Methods
Given the estimates and predictions η̂, β̂, γ̂jk and ε̂ (produced either from the mixed model
framework or from OLS), we compute the re-samples under the alternative hypothesis
using:

Y ∗1 = Dη̂ +Xβ̂ +
J∑
j=1

K(j)∑
k=1

κjkZjkPjkG
−
jkGjkγ̂jk + Pεε̂, (5.5)

where Pjk and Pε, are shuffling or bootstrapping matrices (instead of permutation matri-
ces). Shuffling matrices are diagonal matrices with elements −1 or 1 in the diagonal. A
bootstrapping matrix is a square matrix B with elements 1 or 0 such that 1B = 1; on the
other side, any permutation matrix P must satisfied both equality, 1>P = 1> and P1 = 1
in addition to have elements 0 or 1. For each new re-sample Y ∗1 we randomly select new
Pjk and new Pε. The inflation factors κjk are added in order to correct for the variance of
the predictors of the random effects if estimated in the mixed model framework. This pa-
rameter is inspired by the bootstrap developed by Carpenter et al. (2003) and correct for
the shrinkage of the predictions of random effect induced by the estimation using mixed
models. We use for instance κjk = σ̂2

jk

sd(γ̂jk) , where sd(·) is the sample standard deviation.
The contrast matrices Gjk are especially useful for the re-sampling of the gANOVA

correlation structure or when using the OLS estimation. In these cases the estimation only
uses the ”constraint” matrices ZjkG−jk and software produces a prediction of the contrasts
Gjkγjk. However, shuffling/bootstrapping/permuting directly these predictions Gjkγjk
does not change the average of the re-sampled random effects. Indeed, for all shuffling,
bootstrap or permutation matrix Pjk, we have the following equality 1G−jkP ′jkGjkγ̂jk =
0P ′jkGjkγ̂jk = 0 when Gjk is a contrast a therefore orthogonal to 1. This implies that
the sum of squares associated with this effect would stay constant over all re-samples
which is contrary to the requirement that re-samples should be like new samples. It is

https://github.com/jaromilfrossard/gANOVA
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not the case when shuffling/bootstrapping PjkG−jkGjkγ̂jk which is our new proposal. Note
that for the correlation structure for which Gjk = G−jk = I this difference disappears.
Moreover, permuting random effects are also proscribed as 1>PjkG−jkGjkγ̂jk = 0 when Pjk
is a permutation matrix.

Using re-samples under the alternative hypothesis in Equation 5.5, we easily produce
re-samples under the null hypothesis inspired by the terBraak method (ter Braak, 1992):

Y ∗tB = Y ∗1 −Xβ̂. (5.6)

Another option inspired by the dekker method (Dekker et al., 2007) is computing
the re-sampled statistic using Y ∗1 as the response variable and the permuted fixed part of
the design [D PXRDX] where PX is a permutation matrix. Permuting the design breaks
any links between the re-sampled response under the alternative and the effect of interest
β.

In summary, we have two re-sampling propositions which are summarized by trans-
formations of the observed data. The terBraak-like method is the transformation of
the observed data {y, D, X, Z} → {Y ∗tB, D, X, Z} and the dekker-like method is
{y, D, X, Z} → {Y ∗1 , D, PRDX, Z}.

5.5 Test Statistics, Parametric and Re-sampled p-
values

In order to test hypothesis in Equation 5.3, four statistics are commonly used in the
parametric setting. The quasi-F statistics (Clark, 1973) is fastest to compute because it
is based on sums of squares but can be used with a balanced designed without missing
value. Then, based on the mixed model framework, the Satterthwaite’s approximation
(Schaalje et al., 2002) and the Kenward-Roger approximation (Kenward and Roger, 1997)
propose approximation of the degree of freedom. They produce good and similar results
in terms of type I error rate in the parametric setting. However, the Kenward-Roger
approximation is computationally intensive which makes it not adapted for re-sampling
tests using the present algorithms. Finally, we can also use in the mixed model framework
the likelihood ratio test statistic which asymptotic is a χ2 distribution. However, it shows
some divergence between the type I error rate and the nominal level in the parametric
setting.

Note that the quasi-F statistic cannot be used in combination with the dekker-like
method as the statistic relies on the orthogonality of the design matrix in balanced design.
The dekker-like method permutes the design which breaks the orthogonality in the design
and invalidates the use of the statistic.

The quasi-F statistic, the Satterthwaite’s approximation, and the Kenward-Roger
approximation rely on approximations of the degree of freedom to compute the p-values.
Unlike F statistic in ANOVA, the distribution from which the p-value is computed also
depends on the observed response. In a re-sampling test, it implies that computing
the p-value using re-sampled statistics or their transformations into the probability scale
produces different results. For the simple model like ANOVA, running a permutation test
using the distribution by permutation of the statistic (e.g. Fy) or of its corresponding
p-value (e.g. 1 − F−1

df1,df2(Fy) when df1 and df2 are degrees of freedom corresponding on
the parametric test) leads to the same results. It is only true when F−1

df1,df2 is a strictly
increasing function of Fy and df1 and df2 are fixed. However, this equivalence does not hold
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Table 5.1: All possible combinations of estimations, re-sampling methods and test statis-
tics presented in Chapter 5.

Methods Statistics Drawbacks
Estimation by OLS

quasi-F Balanced Design Simulation study
Satterwhaite Slow Univariate
LRT Slow Univariate

terBraak

Kenward-Roger Very slow
quasi-F Not feasible
Satterwhaite Slow Univariate
LRT Slow Univariate

dekker

Kenward-Roger Very slow

Estimation by MLM
quasi-F Balanced Design Signals
Satterwhaite Slow Univariate
LRT Slow Univariate

terBraak

Kenward-Roger Very slow
quasi-F Not feasible
Satterwhaite Slow Univariate
LRT Slow Univariate

dekker

Kenward-Roger Very slow

for methods relying on approximation of degrees of freedom, like the quasi-F statistic.
If the degrees of freedom are different through re-samples, using p-values instead of the
statistics seems a more valid re-sampling approach to compute the p-value as it compares
values on the same scale.

Moreover, this approach has a second advantage in the multiple comparisons problems
as the degrees of freedom are also different through tests. For instance, the cluster-mass
test procedure relies on summation of statistics to compute the cluster-mass. It relies
on the assumption that the distributions under the null hypothesis are the same through
time-points and using different degrees of freedom acknowledge that these distributions
are indeed different. Transforming the statistics into p-values (more precisely into the
logarithm of their inverse) insures that each test has the same scale when computing
the cluster-mass. Moreover, using the logarithm of the p-values insures that the smallest
p-value has an important effects on the cluster-mass in comparison the relatively small
one; in lay terms, the logarithm of the p-value is a more ”natural” scale (Fisher, 1948),
especially when combining statistics. In summary, from a re-sampled response Y ∗, we
produce a re-sampled statistics T ∗ and re-sampled degrees of freedom df ∗1 and df ∗2 , which
are transformed into a p-value using p∗ = 1 − F−1

df∗1 ,df
∗
2
(T ∗), where F−1

df∗1 ,df
∗
2

is the inverse
of the theoretical distribution function of the statistic (e.g. a F distribution). Then,
the re-sampled statistics in the probability scale are transformed using logarithm: T ∗ln p =
− ln(p∗). Finally, performing this for all time-points allows us to use the cluster-mass
procedure by combining statistics on the same scale. The usual threshold set at the 95
percentile of the parametric distribution becomes τ = − ln 0.05.



96 Chapter 5. A General Re-sampling Method for Multiple Tests in CRE-MEM

Table 5.1 shows all possible combinations of estimations, re-sampling method and test
statistics described in the previous sections. Section 5.6 shows the combination of the
OLS estimation, with the terBraak re-sampling method and the quasi-F statistic. It is
the fastest case which is feasible for a simulation study in both the univariate case and
the comparison of signals. Moreover, the first estimation by MLM (also with the quasi-F
and terBraak method) could also be tested in a simulation study with a reasonably
low computing time for the comparison of signals as only one MLM optimization per
time-points must be performed. Moreover, the computing time may be reduced by taking
the optimal parameters at time-point t − 1 as the first guess of the parameters at time
t as the signals show high temporal correlations. As explained previously, the dekker
method disturbs the design which makes it not compatible with the quasi-F statistic.
Finally, using the Satterthwaite’s approximation, or likelihood ratio test as test statistics
implies an optimisation of MLM for each re-sample. These procedures are obviously
time consuming. However, some computing time may be gained by setting, through re-
samples, the first guess of the parameters as the average (or median) of the previous
optimal parameters. Indeed, the optimal parameters of all re-samples may be close to
a central value through re-samples. However, even with these small optimizations, it is
actually not testable in a simulation study for comparison of signals in a reasonable low
computing time. Nevertheless, Winkler et al. (2016) propose to use matrix completion
as a method to predict permuted test statistics without performing all optimizations.
Indeed, the multiple comparisons procedures like cluster-mass test are performed using a
large matrix of test statistics sorted by re-samples in rows (around 5000) and time-points
(around 1000) in columns. In CRE-MEM, finding each 5 millions elements of this matrix
is a time consuming task and Winkler et al. (2016) show that this full matrix can be
imputed by matrix completion using only a subset of the re-sampled statistical values.

5.6 Simulation Study
In Bürki et al. (2018), we presented simulation studies implementing the re-sampling test
for the quasi-F in CRE-MEM in the univariate case and for the comparison of signals
with the cluster-mass test. In both cases, OLS is used to estimate the β̂, η̂jk and ε̂,
the matrices Pjk and Pε are shuffling matrices, the re-sampling method is the terBraak
method and the scale of re-sampled random effects is not changed as we set κjk = 1.

5.6.1 The Univariate Case
For the univariate case, the design crosses 20 participants with 18 or 36 stimuli. It assumes
one variable of type VS with 2 levels (e.g. sex), one variable of type VS with 3 levels (e.g.
emotions of the stimuli) and one variable of type VM with 2 levels (e.g. test and retest
of the same settings); see Section 4.4 for the typology of variables in CRE-MEM. These
simulation settings produce 720 observations for the case with 18 stimuli and 1440 for the
case with 36 stimuli.

We simulated the data assuming the variances of random effects decreasing with re-
spect to the interaction levels (sd = 1, 0.5, 0.3) but a higher variability for the error term
(sd = 2). All random effects and the error term are simulated from normal distributions.

In the univariate case, 5 different tests are compared. First, the F1 ANOVA (rANOVA
after averaging the data over the stimuli) with a parametric p-value and p-value by permu-
tation (Kherad-Pajouh and Renaud, 2015) which model does not assume random effects
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Table 5.2: Type I error rate of the tests of main effects of 3 variables (see Section 4.4 for
the typology). The F1 ANOVA is not a reliable test when crossing stimuli and items as
it does not control the type I error rate. Moreover, using CRE-MEM or quasi-F statistic
we achieve type I error rate close to the nominal level for both the parametric and the re-
sampling tests. Confidence intervals are computed using Agresti and Coull (1998). Bold
font corresponds to nominal level (5%) within the confidence interval, red font corresponds
to confidence interval above the nominal level and italic font corresponds to confidence
interval below the nominal level. Table presented in Bürki et al. (2018).

VP VS VM

18 Stimuli
ANOVA F1 (parametric) .064 [.057;.072] .628 [.614;.644] .120 [.111;.131]
ANOVA F1 (permut.) .064 [.057;.072] .626 [.611;.641] .120 [.111;.131]
CRE-MEM (Satterthwaite) .054 [.046;.063] .053 [.045;.062] .050 [.042;.059]
Quasi-F (parametric) .048 [.042;.056] .051 [.045;.058] .036 [.031;.043]
Quasi-F (permut.) .052 [.045;.059] .054 [.048;.062] .043 [.038;.050]
Quasi-F (permut. log-p) .052 [.046;.060] .052 [.046;.060] .045 [.039;.052]

36 Stimuli
ANOVA F1 (parametric) .056 [.049;.063] .555 [.540;.571] .093 [.084;.102]
ANOVA F1 (permut.) .055 [.048;.062] .554 [.539;.570] .093 [.084;.102]
CRE-MEM (Satterthwaite) .049 [.042;.056] .052 [.045;.059] .048 [.041;.055]
Quasi-F (parametric) .046 [.040;.053] .048 [.042;.055] .038 [.033;.044]
Quasi-F (permut.) .050 [.043;.057] .052 [.046;.060] .043 [.038;.050]
Quasi-F (permut. log-p) .050 [.044;.057] .051 [.045;.059] .043 [.037;.050]

associated to stimuli. Then, we estimated the CRE-MEM with a RI-L correlation struc-
ture and tested the effect using the Satterwhaite’s approximation. Finally, we compared 3
different types of quasi-F statistic: the parametric one, the re-sampled test with a p-value
computed on the raw statistics and the re-sampled test with the transformation to the
logarithm of the p-value (see Section 5.5).

Table 5.2 shows the results of estimated type I error rate based on 4000 simulations
with their confidence intervals. We first see that the F1 ANOVA does not control the
type I error rate for both parametric and permutation tests. Moreover, the discrepancy
is high as it produces up to 60% of false positive (here for 18 stimuli and variable VS).
However, the test using CRE-MEM (with the Satterwhaite’s approximation) and the 3
types of quasi-F statistics produce type I error rates close to the nominal as they are
designed to take into account the variability induced by the sampling of stimuli. The
Satterwhaite’s approximation performs better but the 3 quasi-F statistic are still reliable
tests for controlling the type I error rate as they may only be too conservative. Finally,
computing p-values on the raw re-sampled quasi-F statistics or on their transformations
to the logarithm of the p-values does not seem to influence the type I error rate.
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5.6.2 Comparison of Signals

Table 5.3: FWER of the comparison of signal of 3 main effects. The F1 ANOVA are not
reliable method to control the FWER rate. The quasi-F statistic produces type I error
rate below 10% with the cluster-mass test and conservative one with the control of the
FDR (Benjamini and Hochberg, 1995). Confidence intervals are computed using Agresti
and Coull (1998). Bold font corresponds to nominal level (5%) within the confidence
interval, red font corresponds to confidence interval above the nominal level and italic
font corresponds to confidence interval below the nominal level.

VP VS VM

9 stimuli, 10 participants
ANOVA F1 (cluster-mass) .128 [.118;.139] .998 [.997;1] .153 [.142;.164]
ANOVA F1, log-p (cluster-mass) .151 [.141;.163] .998 [.997;.999] .146 [.135;.157]
ANOVA F1, param. (B.-H.) .043 [.038;.050] .998 [.997;1] .095 [.087;.105]
Quasi-F, log-p (cluster-mass) .090 [.082;.099] .058 [.052;.066] .066 [.058;.074]
Quasi-F, param. (B.-H.) .016 [.013;.021] .077 [.069;.086] .006 [.004;.010]

18 stimuli, 20 participants
ANOVA F1 (cluster-mass) .117 [.107;.127] 1 [1;1] .242 [.230;.256]
ANOVA F1, log-p (cluster-mass) .126 [.116;.136] 1 [1;1] .216 [.204;.229]
ANOVA F1, param. (B.-H.) .049 [.043;.056] 1 [1;1] .212 [.200;.225]
Quasi-F, log-p (cluster-mass) .082 [.073;.090] .066 [.059;.074] .091 [.083;.100]
Quasi-F, param. (B.-H.) .024 [.020;.029] .034 [.029;.040] .010 [.008;.014]

36 stimuli, 20 participants
ANOVA F1 (cluster-mass) .079 [.071;.088] .998 [.996;.999] .133 [.122;.143]
ANOVA F1, log-p (cluster-mass) .083 [.075;.092] .997 [.995;.999] .122 [.112;.132]
ANOVA F1, param. (B.-H.) .038 [.033;.045] 1 [1;1] .120 [.111;.131]
Quasi-F, log-p (cluster-mass) .069 [.062;.078] .079 [.071;.088] .091 [.083;.100]
Quasi-F, param. (B.-H.) .028 [.024;.034] .028 [.023;.033] .011 [.009;.015]

36 stimuli, 40 participants
ANOVA F1 (cluster-mass) .096 [.088;.106] 1 [1;1] .314 [.300;.329]
ANOVA F1, log-p (cluster-mass) .098 [.089;.108] 1 [1;1] .283 [.270;.298]
ANOVA F1, param. (B.-H.) .047 [.041;.054] 1 [1;1] .337 [.322;.352]
Quasi-F, log-p (cluster-mass) .062 [.055;.070] .066 [.058;.074] .085 [.077;.094]
Quasi-F, param. (B.-H.) .022 [.018;.028] .027 [.022;.033] .012 [.009;.016]

For the comparison of signals, we assume 4 different designs: 9 stimuli and 10 participants,
18 stimuli and 20 participants, 36 stimuli and 20 participants, and finally, 36 stimuli and
20 participants. As for the univariate case, we assume one variable of type VS (2 levels),
one variable of type VS (3 levels) and one variable of type VM (2 levels).

As for the univariate case, we simulated the response variable with normal random
effects and their variances decreasing with respect to the interaction levels (sd = 1, .5, .3)
but a higher variability for the error term (sd = 2). To simulate time correlations of ran-
dom effects and errors terms, we use a Gaussian correlation function ρ(τ) = exp(−3τ 2/R)
(Abrahamsen, 1997), with R = 60 for the random effects associated to the participants,
R = 40 for the random effects associate to the stimuli and R = 20 for the random effects
associate to the error terms.
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Figure 5.1: Average power of the test of VM variable for the model with 36 stimuli and
20 participants. The cluster-mass test with the quasi-F statistic still have a high power.
However, the control of the FDR results in less powerful test.

Five different methods are evaluated and their FWER are shown in Table 5.3: the
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permuted F1 ANOVA with the cluster-mass test, the permuted F1 ANOVA with the
cluster-mass test on the logarithm of p-values, the parametric F1 ANOVA controlling
the false discovery rate (FDR) (Benjamini and Hochberg, 1995), the re-sampled quasi-F
with the cluster-mass on the logarithm of p-values and finally the parametric quasi-F
controlling the false discovery rate.

As expected, the 3 methods based on the F1 ANOVA are not reliable to control the
FWER and may produce up to FWER = 100% (variable VS with 18 stimuli and 20
participants). On the contrary, the cluster-mass test using the quasi-F statistics keeps
the nominal level under 10%, which is satisfying in comparison to the alternative of the
F1 ANOVA. The parametric quasi-F with the control of the false discovery rate using
Benjamini and Hochberg (1995) produces conservative FWER (with a minimal at 0.6%
for the variable VM on the smallest design.). As shown in Figure 5.1, the average power of
the quasi-F statistic is still high when using the cluster-mass test while the same statistics
with the control of the FDR using Benjamini and Hochberg (1995) is reduced.

5.7 Conclusion
In Chapter 5, we propose a general re-sampling approach for testing fixed effects in CRE-
MEM. Moreover, Bürki et al. (2018) shows that not taking to account the stimuli effect in
EEG may lead to an increase of the FWER. However, this procedure is actually based on
the quasi-F statistic and has some drawbacks for EEG data. It is the fastest statistic but
is too stringent for real data analysis as it must be performed using a balanced design.
In EEG data analysis, even if the design planned by the experimenters is balanced, we
usually delete numerous trials that shows recording errors. In most cases, we finally have
an unbalanced dataset to analyse. A first solution may arise by slightly modifying the
quasi-F statistic. Using the appropriate orthogonalization of the projections matrices
may result in a statistic for unbalanced design. A second solution may be the completion
of the missing values. Indeed, the recoding error of the signals may only appear in a small
time windows of the signal but the full signal must be deleted for the tests. The missing
part of the signal may be imputed using matrix completion. In addition, if the full signal
is corrupted taking the average of the signal in the cell may be an appropriate solution for
restoring a balance design. Research has still to be carry on to provide the best approach
to analyse EEG data coming from experiments.



Conclusion

More technical conclusions have already been proposed at the end of each Chapter. To
end this thesis, I first propose some thoughts on my work as a statistician. I feel lucky
to have been able to work on three kinds of field related to statistics: the application of
existing methods on real data analyses, the development of new theoretical results and
the creation of computer software. My experience shows that these three domains are
complementary.

First, the creation of permuco proved to be helpful to prove the asymptotic distri-
bution presented in Chapter 3. Indeed, to produce a software fast enough to compute
permutation tests on signals I had to use QR decomposition and learn some basic prop-
erties of this method. It turns out to be a key ingredient to prove the asymptotic of the
distribution by permutation. Moreover, it allows me to propose the most recent permu-
tation method available to analyse the data in Cheval et al. (2018) as I ”just” needed to
generalize permuco from one electrode to the full scalp.

Secondly, working with real data applications allows to collaborate with people in
other fields. You learn from their data analysis practice which helps you to formulate
methodological problems. When working for the manuscript in Cheval et al. (2018), it
was not clear which covariates should be used to adjust the daily physical activity of
the participants. The covariates were strongly correlated, and the final results were not
impacted by this choice. Moreover, one measure was more consensual but using it may still
be refused by reviewers which implies missing an opportunity to publish our findings. The
ideal solution would be performing one test per covariate and using multiple comparisons
procedures to control for the FWER. In that case, it seems that permutation tests may
be a good procedure as they maintain correlation between the tests. This problem must
be investigated from a methodological perspective and may lead to useful applications.

Finally, developing new methods allows you to have a wide range of knowledge. It
helps to develop abstract thought and a deep understanding of the statistical problems.
Together it is helpful for the creation of software as you can structure them for easier
maintenance. In addition, it helps to collaborate for real data applications as you can
propose the best statistical practices.

Among the natural development of this works is the application of permutation tests
and cluster-mass tests using robust statistics. The question is how to use robust statistic
based on M -estimator in combination with permutation methods. First, note that opti-
mizing a robust estimator is a computing intensive task and it would be time consuming
to optimize it for each permutation and each time-point of EEG signals. Even in a simple
design, without nuisance variables, it would be an issue to optimize a robust estimator
on the raw permutations. One solution may come from taking advantage of the weights
produced on the robust estimation of the observed data set. It may produce valid test
for simple models but becomes more complicated when introducing nuisance variables in
the models. Indeed, the permutation methods we saw in Chapter 1 are usually based
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on residual matrices which orthogonalize the interest variables and the response variables
to the nuisance variables. In that case, the transformation is not robust and will be in-
fluenced by outlying observations. The permutation methods of Chapter 1 cannot be
directly used and must be transformed to have robust properties. Again, one solution
may come from the weights but projections using weights are oblique. It results that all
useful properties linked to the orthogonalization to the nuisance variables are lost when
using oblique projections. Finally, even if we find a satisfying permutation method using
a robust statistic in the univariate case, its application on signals raises also multiple
questions. For comparing signals, the weights may be different for each time-point, for
each observation (or, more precisely, complete signal) or for both. All three cases should
be considered in terms of the re-sampling methods, application to real data problems or
to the interpretation of the results using cluster statistics.

Moreover, we saw that bootstrap or shuffling (”coin-flip”) may be used instead of per-
mutation with some of the permutation methods presented in Section 1.2.2. Moreover,
Langsrud (2005) shows that rotation is also a valid transformation under spherical dis-
tributions to produce a null distribution by re-sampling. When shuffling residuals, we
preserve some heteroscedasticity but assume the first moment set to zero and the sym-
metry of the distribution. However, the difference between bootstrap and permutation is
not obvious. When using permutation methods, the permuted residuals are not fully ex-
changeable, and we have no guarantee of an exact test (except for the huh jhun method
under sphericity (Kherad Pajouh and Renaud, 2010)). For the bootstrap, there is no
exact property in finite sample size even for the simple cases without nuisance variables.
To our knowledge, we don’t actually have any proof for the best choice between permu-
tation rather than bootstrap when re-sampling some sorts of residuals. ter Braak (1992)
suggests that: ”Permutation may have some advantage here because there is maximum
balance in each random permutation”. This argument suggests that permutation samples
are more typical instances of the observed sample rather than bootstrap samples. Indeed,
bootstrapping allows, with a very low probability, no variability in the re-samples. In
more concrete cases, the problem was also noted by Salibian-Barrera and Zamar (2002)
for the robust bootstrap as a small proportion of bootstrap samples may be composed
fully of outliers, which implies some numerical instability.

Finally, we saw in Section 1.4.5 that cluster-based methods produce an inference at the
cluster level. A time-point inference is then proscribed. EEG allows a precise temporal
recording and it is disappointing that timing the brain activity is not advisable using
cluster-based procedures. The precision of the tools is then lost in the data analysis
although some smoothing of the raw data already biases the exact timing of the events.
Answering the question, ”When does the effect occur ?”, may lead to errors using cluster-
based procedures. However, the troendle procedure (presented in Chapter 1) does not
have this problem and also controls the FWER. It is based on both a min-p procedure and
a step-wise argument. Moreover, if the signals are smooth enough, the individual tests
are sufficiently correlated to produce powerful tests using troendle. It may be a good
solution to have a proper timing of the effects. Moreover, the cluster-mass test controls
only the weak FWER which considers the special case when all hypotheses are under
the null. When there are true effects on some parts of the signals, the cluster-mass test
does not give a guarantee of the control of the FWER for the remaining null hypotheses.
In that case, we should prefer multiple comparisons methods that control the strong
FWER (like troendle) which considers all possible combinations of null and alternative
hypotheses on the signal. We can hypothesize that there might be a relationship between
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the strong control of the FWER and the ability to interpret the timing of the effects but
the question remains: is the strong control of the FWER a necessary condition to interpret
the timing of the effects in EEG? Finally, it may be a fruitful topic to investigate: the use
of the troendle method in combination of tests on the slopes (inspired by the works in
Section 2.3) to improve the timing of the effects in EEG.
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Chapter 1

A.1 Comparisons of Existing Packages

A.1.1 ANOVA and ANCOVA
R> install.packages("lmPerm")
R> install.packages("flip")
R> install.packages("GFD")
R> library("lmPerm")
R> library("flip")
R> library("GFD")

R> emergencycost$LOSc <- scale(emergencycost$LOS, scale = FALSE)
R> contrasts(emergencycost$sex) <- contr.sum
R> contrasts(emergencycost$insurance) <- contr.sum
R>
R> X <- model.matrix( ˜ sex+insurance, data = emergencycost)[, -1]
R> colnames(X) <- c("sex_num", "insurance_num")
R> emergencycost <- data.frame(emergencycost,X)
R>
R> anova_permuco <- aovperm(cost ˜ sex * insurance, data = emergencycost)
R> anova_GFD <- GFD(cost ˜ sex * insurance, data = emergencycost,
R> CI.method = "perm", nperm = 5000)
R>
R>
R> ancova_permuco <- aovperm(cost ˜ LOSc * sex * insurance, data = emergencycost,
R> method = "huh_jhun")
R> ancova_flip <- flip(cost ˜1, X = ˜ sex_num, Z = ˜ LOSc * insurance_num * sex_num
R> - sex_num, data = emergencycost, statTest = "ANOVA",
R> perms = 5000)
R> ancova_lmPerm <- aovp(cost ˜ LOS * sex * insurance, data = emergencycost,
R> seqs = FALSE, nCycle = 1)

R> anova_permuco
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Anova Table
Permutation test using freedman_lane to handle nuisance variables and
5000 permutations.

SS df F parametric P(>F)
sex 60470803 1 0.7193 0.3975
insurance 598973609 1 7.1249 0.0083
sex:insurance 334349436 1 3.9771 0.0477
Residuals 14459666504 172

permutation P(>F)
sex 0.3978
insurance 0.0120
sex:insurance 0.0508
Residuals

R> anova_GFD

Call:
cost ˜ sex * insurance

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

sex 0.6397413 1 0.42380448 0.4662
insurance 6.3367469 1 0.01182616 0.0584
sex:insurance 3.5371972 1 0.06000678 0.0730

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

sex 0.6397413 1 5.743756 0.4556003
insurance 6.3367469 1 5.743756 0.0471947
sex:insurance 3.5371972 1 5.743756 0.1112178

R> ancova_permuco

Anova Table
Permutation test using huh_jhun to handle nuisance variables and
5000, 5000, 5000, 5000, 5000, 5000, 5000 permutations.

SS df F parametric P(>F)
LOSc 2162110751 1 483.4422 0.0000
sex 14630732 1 3.2714 0.0723
insurance 618366 1 0.1383 0.7105
LOSc:sex 8241073 1 1.8427 0.1765
LOSc:insurance 29107536 1 6.5084 0.0116
sex:insurance 123892 1 0.0277 0.8680
LOSc:sex:insurance 13457877 1 3.0091 0.0846
Residuals 751350616 168

permutation P(>F)
LOSc 0.0002
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sex 0.0736
insurance 0.7224
LOSc:sex 0.1756
LOSc:insurance 0.0102
sex:insurance 0.8704
LOSc:sex:insurance 0.0820
Residuals

R> summary(ancova_lmPerm)

Component 1 :
Df R Sum Sq R Mean Sq Iter Pr(Prob)

LOS 1 2162110751 2162110751 5000 <0.0000000000000002
sex 1 14630732 14630732 4159 0.0236
LOS:sex 1 8241073 8241073 1525 0.0616
insurance 1 618366 618366 94 0.5213
LOS:insurance 1 29107536 29107536 5000 0.0010
sex:insurance 1 123892 123892 80 0.5625
LOS:sex:insurance 1 13457877 13457877 2238 0.0429
Residuals 168 751350616 4472325

LOS ***
sex *
LOS:sex .
insurance
LOS:insurance ***
sex:insurance
LOS:sex:insurance *
Residuals
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R> ancova_flip

Test Stat tail p-value
cost F 3.271 > 0.0724

A.1.2 Repeated Measures ANOVA
R> jpah2016$id = as.factor(jpah2016$id)
R> jpah2016$bmic = scale(jpah2016$bmi,scale = FALSE)
R>
R> rancova_permuco <- aovperm(iapa ˜ bmic * condition * time + Error(id/(time)),
R> data = jpah2016)
R> rancova_lmPerm <- aovp(iapa ˜ bmic * condition * time + Error(id/(time)),
R> data = jpah2016, nCycle = 1, seqs = FALSE)

R> rancova_permuco
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Permutation test using Rd_kheradPajouh_renaud to handle nuisance
variables and 5000 permutations.

SSn dfn SSd dfd MSEn MSEd
bmic 18.6817 1 106883.5 13 18.6817 8221.808
condition 27878.1976 2 106883.5 13 13939.0988 8221.808
bmic:condition 89238.4780 2 106883.5 13 44619.2390 8221.808
time 268.8368 1 167304.9 13 268.8368 12869.607
bmic:time 366.4888 1 167304.9 13 366.4888 12869.607
condition:time 21159.7735 2 167304.9 13 10579.8867 12869.607
bmic:condition:time 29145.7201 2 167304.9 13 14572.8601 12869.607

F parametric P(>F) permutation P(>F)
bmic 0.0023 0.9627 0.9660
condition 1.6954 0.2217 0.2180
bmic:condition 5.4269 0.0193 0.0248
time 0.0209 0.8873 0.8856
bmic:time 0.0285 0.8686 0.8666
condition:time 0.8221 0.4611 0.4392
bmic:condition:time 1.1323 0.3521 0.3528

R> summary(rancova_lmPerm)

Error: id
Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)
bmic 1 3270 3270 51 0.8824
condition 2 20000 10000 801 0.3009
bmic:condition 2 89238 44619 4863 0.0255 *
Residuals 13 106884 8222
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: id:time
Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)
time 1 1047 1047.4 51 0.9412
bmic:time 1 31 31.5 51 0.8039
condition:time 2 29793 14896.4 320 0.3875
bmic:condition:time 2 29146 14572.9 419 0.3914
Residuals 13 167305 12869.6
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B.1 Analysis of Full-Scalp EEG Data
In this appendix you fill find R script to reproduce the full-scalp analysis of Cheval et al.
(2018). We will need the following R packages (and the devtools and plyr package
must also be installed):

R> library(edf)
R> library(abind)
R> library(xlsx)
R> library(igraph)
R> devtools::install_github("jaromilfrossard/clustergraph")
R> library(permuco)
R> library(clustergraph)
R> library(Matrix)
R> library(tidyr)
R> library(dplyr)

The EEG data are freely available in the ZENODO repository. We download it and
decompress it using:

R> rep <- "https://zenodo.org/record/1169140/files/"
R> file <- "ERP_by_subject_by_condition_data.zip"
R> download.file(paste0(rep, file), "eeg.zip")
R> unzip("eeg.zip")

It creates a folder named raw data which contains one ”.edf” file for each experimental
condition for each subject. These files contains signals that we need to download in R and
store in a 3D array. The first dimension of this 3D array stores the signal with respect to
the design (experimental conditions × participants), the second stores it with respect to
the time and the third stores the data with respect to the electrodes. First, we create the
design data.frame with the participants and the within-participants factors: the type
of stimuli, and the task (here action).

R> design <- expand.grid(subject = c(111, 113, 115, 116, 117, 118, 120, 122,
R> 123, 124, 126, 127, 128, 130, 131, 132, 134, 135, 137, 138,



122 Appendix B. Supplementary Material for Chapter 2

R> 139, 140, 141, 142, 143, 144, 145, 146, 147),
R> stimuli = c("AP", "SED"), action = c("Av_App", "Av_Ev"))

To produce the array containing the signals, we download in R for each row of the
design the appropriate signals. Then, we take the difference with the neutral condition.

R> edf_filname <- list.files("raw_data")
R>
R> signal <- list()
R> for(i in 1:nrow(design)){
R> # Select the experimental condition
R> nid <- grepl(design$subject[i], edf_filname)
R> nstim <- grepl(design$stimuli[i], edf_filname)
R> naction <- grepl(design$action[i], edf_filname)
R>
R> # Select the neutral VS Not neutral
R> nneutr <- grepl("Rond", edf_filname)
R> ntask <- grepl("Task", edf_filname)
R>
R> # Download the data
R> data_task <- read.edf(paste("raw_data/",
R> edf_filname[nid&nstim&naction&ntask], sep = ""))
R> data_neutr <- read.edf(paste("raw_data/",
R> edf_filname[nid&naction&nneutr], sep = ""))
R>
R> # Store the signals
R> data_task <- data_task$signal[sort(names(data_task$signal))]
R> data_task <- t(sapply(data_task, function(x)x$data))
R> data_neutr <- data_neutr$signal[sort(names(data_neutr$signal))]
R> data_neutr <- t(sapply(data_neutr, function(x)x$data))
R>
R> # Store the signals relative to neutral
R> signal[[i]] <- data_task - data_neutr
R> }
R>
R> # Create the 3D array
R> signal <- abind(signal, along = 3)
R> signal <- aperm(signal, c(3, 2, 1))
R>
R> # Select usefull time windows (from 0ms to 800ms, with a frequency of 512hz)
R> signal <- signal[,102:512,]

Then, we add the between-participants variable mvpa describing the usual physical
activity of each participant. We use for the test the centred variable mvpac.

R> file <- "data_self_report_R_subset_zen.csv"
R> data_sr <- read.csv(paste0(rep,file),sep=";")
R> design <- left_join(design, data_sr, by = "subject")
R>
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R> # Reshape the design
R> design$stimuli <- plyr::revalue(design$stimuli,
R> c("AP" = "pa","SED" = "sed"))
R> design$action <- plyr::revalue(design$action,
R> c("Av_App" = "appr","Av_Ev" = "avoid"))
R> design$mvpac <- as.numeric(scale(design$MVPA, scale = F))

Then, we create a matrix of adjacency using the theoretical position of the electrodes
which are found on the website (www.biosemi.com).

R> # Download the Position of electrodes
R> download.file("https://www.biosemi.com/download/Cap_coords_all.xls",
R> "Cap_coords_all.xls",mode="wb")
R> coord <- read.xlsx(file="Cap_coords_all.xls", sheetIndex = 3,
R> header =T,startRow=34)
R>
R> # Clean the coordinate data
R> coord <- coord[1:64,c(1,4:6)]
R> colnames(coord) <- c("electrode","x","y","z")
R>
R> coord$electrode <- plyr::revalue(coord$electrode, c("T7 (T3)" = "T7",
R> "Iz (inion)" = "Iz", "T8 (T4)" = "T8", "Afz" = "AFz"))
R> coord$electrode <- as.character(coord$electrode)

From the position of the electrodes, we compute all pairs of Euclidean distances. After
some trials, we find that 35mm is the minimal distance such that the graph of adjacency
is connected.

R> # Create adjacency matrix
R> distance_matrix <- dist(coord[, 2:4])
R> adjacency_matrix <- as.matrix(distance_matrix) < 35
R> diag(adjacency_matrix) <- FALSE
R>
R> dimnames(adjacency_matrix) = list(coord[,1], coord[,1])

We convert the adjacency matrix into a igraph object and we add the position of
electrodes as attributes for each vertex.

R> graph <- graph_from_adjacency_matrix(adjacency_matrix, mode = "undirected")
R> graph <- delete_vertices(graph,
R> V(graph)[!get.vertex.attribute(graph, "name")%in%(coord[,1])])
R>
R> graph <- set_vertex_attr(graph,"x",
R> value = coord[match(vertex_attr(graph,"name"),coord[,1]),2])
R> graph <- set_vertex_attr(graph,"y",
R> value = coord[match(vertex_attr(graph,"name"),coord[,1]),3])
R> graph <- set_vertex_attr(graph,"z",
R> value = coord[match(vertex_attr(graph,"name"),coord[,1]),4])

www.biosemi.com
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We set the parameters for the cluster-mass test (number of permutation, mass function,
number of processors, the design, and the coding of factors.). The threshold is set by
default at the 95 percentile of the F statistic.

R> np <- 4000
R> aggr_FUN <- sum
R> ncores <- 5
R> formula <- ˜ mvpac*stimuli*action + Error(subject/(stimuli*action))
R> contr <- contr.sum
R>
R> pmat <- Pmat(np = np, n = nrow(design))

Then, we perform the 7 tests of the rANOVA. The following function computes a
total of 7 effects × 4000 permutations × 411 time-points × 64 electrodes = 73651200 F
statistics using 5 processors. The computation takes several minutes:

R> model <- clustergraph_rnd(formula = formula, data = design,
R> signal = signal, graph = graph, aggr_FUN = aggr_FUN,
R> method = "Rd_kheradPajouh_renaud", contr = contr,
R> return_distribution = F, threshold = NULL, ncores = ncores,
R> P = pmat)

The results are plotted for the interaction stimuli:action (the 6th effect) using the
image method. Printing the object model gives more information on the clusters for each
effect.

R> image(model, effect = 6)
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Figure B.1: Results of the full-scalp cluster-mass test for the interaction stimuli × action.
In the X-axis are displayed the time measures (at 512Hz) and in the Y-axis are displayed
the electrodes. The coloured cluster is a significant effect and the grey one are non
significant (but above the threshold).
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C.1 Average over Transformation of a Square Matrix

C.1.1 Average over all Permutations
When permuting a square matrix, all diagonal elements are rearranged in the diagonal and
all off-diagonal elements are rearranged in the upper and lower triangles. The average
over all permutations of a square matrix A of size n is simply computed by averaging
diagonal and off-diagonal elements separately:
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For the special case when A = yy>:
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For the special case when 1>A01 = 0 (e.g. for any projection matrices orthogonal to
1):

1
n!
∑
P∈P

P>A0P = 1
n− 1tr(A0)R1. (C.3)

For the special case when 1>A11 = n (e.g. for any projection matrices into a space
containing 1):

1
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∑
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P>A1P = tr(A1)− 1
(n− 1) I − tr(A1)− n

(n− 1) H1. (C.4)
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C.1.2 Average over all Distinct Bootstrap Samples
Similarly to average over all permutations, the average over all bootstrap samples of the
vector y is computed using the set of all ”bootstrap matrices” B = {B1, . . . , Bnn}:
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By = H1y. (C.5)

We conjecture that the average over all bootstrap samples of the matrix A is:
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C.1.3 Average over all Distinct Shuffle Samples
Similarly to average over all permutations or bootstrap sample, the average over all
shuffle samples of the vector y is computed using the set of all ”shuffle matrices” S =
{S1, . . . , S2n}.

1
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∑
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Sy = 0. (C.7)

When shuffling a square matrix, the diagonal elements stay the same and the off
diagonal change sign depending on the shuffle, which leads to:

1
2n

∑
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S>AS = diag(A), (C.8)

where diag(A) is a diagonal matrix with the elements of A.

C.2 Asymptotic of Maximum
Consider the random variable Yi ∼ FY and its absolute value |Yi| ∼ F|Y |. Then, the
probability of the maximum of n independent instance of Yi scaled by
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Assuming a polynomial decrease of the tail of the distribution such that 1−F|Y |(y) ∼
y−p then it density is f|Y |(y) ∼ y−p−1 and we have:
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and, with p = 2, it converges to 1− expm−2 and with p < 2 it converges to∞. Moreover,
a polynomial decrease of the tails imply also the second moment of Yi such that:

E
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y2y−p−1dy

= C
∫ ∞

0
y−p+1dy <∞ iff p > 2. (C.11)

Together, Equation C.9 and C.11 implies Var [Y ] <∞↔ maxi∈1,...,n

∣∣∣ 1√
n
Yi
∣∣∣→ 0.

C.3 Additional Asymptotic Results
Assuming a regression model as Equation 3.1 and using the convergences defined in Equa-
tions 3.20, 3.21 and 3.22, we find under the null hypothesis (β = 0):

1
n− p

y>y = 1
n− p

(
η>D>Dη + 2e>Dη + e>e

)
→ µ2

Dη + σ2
Dη + σ2

ε , (C.12)

as,
1

n− p
η>D>Dη = 1

n− p
η>H1D

>Dη + 1
n− p

η>R1D
>Dη → µ2

Dη + σ2
Dη, (C.13)

2
n− p

e>Dη ≤ 2
n− p

e>1 max (Dη)→ 0, (C.14)

1
n− p

e>e→ σ2
ε . (C.15)

Moreover, we also deduce:
1
n
y>RDy = 1

n
e>RDe→ σ2

ε , (C.16)

and
1
n
y>HDy = 1

n
y>y − 1

n
y>RDy → µ2

Dη + σ2
Dη. (C.17)

C.4 Finite Sample Size and Asymptotic Results un-
der Several Permutation Methods

C.4.1 Properties of the F Statistic with the kennedy Permuta-
tion Method

The kennedy permutation method is defined by the transformation {y,D,X} → {PRDy,−, RDX}.
The conditional distribution by permutation of the response under the kennedy method
is then:

Pr ((Y ∗K |y) = PRDY ) = 1
n! ∀ P ∈ P , (C.18)

where P is the set of all n! permutation matrices of size n×n. Its conditional expectation
is defined as:

EP [Y ∗K |y] = 0, (C.19)
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and its conditional variance as:

VarP [Y ∗K |y] = EP
[
Y ∗KY

∗ >
K |y

]
= 1
n− 1R1y

>RDy. (C.20)

The permuted statistic is then:

FY ∗K = Y ∗ >K HRDXY
∗
K / (p− q)

Y ∗ >K RRDXY
∗
K / (n− p) . (C.21)

Note that the projection matrix in the denominator is slightly different from Equa-
tion 3.3 due to the transformation of the design: the kennedy method transforms [D X]
into [ RDX].

For a finite sample size, the conditional expectation of the numerator under all per-
mutations is simply:

EP
[

1
p− q

Y ∗>K HRDXY
∗
K |y

]
= 1
n− 1y

>RDy, (C.22)

and for the denominator:

EP
[

1
n− p

Y ∗>K RRDXY
∗
K |y

]
= 1
n− 1

n− p+ q

n− p
y>RDy. (C.23)

For the kennedy method, the conditional expectation of the numerator and denom-
inator of the F statistic are different. This suggests that we can correct the distribution
of permuted F statistic using by the factor of n−p+q

n−p to insure equal moments as proposed
in Section 3.3.2. This difference is the results of the reduction of the rank of the design
from p to p− k.

To prove asymptotic properties of Equation C.21 we first decompose its numerator:

1
p− q

Y ∗ >K HRDXY
∗
K =

p−q∑
i=1

(
1√
p− q

Q>RDX:[i]Y
∗
K

)2

, (C.24)

and the denominator:

1
n− p

Y ∗ >K RRDXY
∗
K = 1

n− p
Y ∗ >K Y ∗K −

p∑
i=1

(
1√
n− p

(Q>RDX:[i])Y ∗ >K

)2

. (C.25)

Moreover, assuming the conditions of the linear model defined in Equation 3.13, 3.14
and 3.15, we have the following asymptotic properties for the first part of the denominator:

EP
[

1
n− p

Y ∗ >K Y ∗K |y
]

= 1
n− p

y>RDy → σ2
ε , (C.26)

and

VarP
[

1
n− p

Y ∗ >K Y ∗K |y
]

= 0. (C.27)

For the second part, we compute:

EP
[

1√
n− p

(Q>RDX:[i])Y ∗ >K |y
]

= 0, (C.28)
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and

VarP
[

1√
n− p

(Q>RDX:[i])Y ∗ >K |y
]

= 1
n− p

p− q
n− 1y

>RDy → 0. (C.29)

Using the continuous mapping theorem, the denominator converges in probability to
σ2
ε .

For the numerator, we have the asymptotic conditional expectation:

EP
[

1√
p− q

(Q>RDX:[i])Y ∗ >K |y
]

= 0, (C.30)

and the asymptotic variance:

VarP
[

1
p− q

(Q>RDX:[i])Y ∗ >K |y
]

= 1
p− q

p− q
n− 1y

>RDy → σ2
ε . (C.31)

Then, it is easy to show that the numerator is equal in distribution to:
1

p− q
(Q>RDX:[i])Y ∗ >K |y d= 1

p− q
(Q∗>RDX:[i])RDy. (C.32)

To prove asymptotic normality of Equation C.32, we need to verify similar conditions
as Equations 3.33, 3.34, 3.35, 3.36 and 3.37. Only conditions involving the observations
y will be different. This means that condition 3.33 becomes:

max
i∈1,...,n

∣∣∣∣∣ 1√
n

(R1RDy)i

∣∣∣∣∣→ 0, (C.33)

and condition 3.34 becomes:
1
n
y>RDy → σ2

ε . (C.34)

Finally, the conditions in Equations 3.35, 3.36 and 3.37 stay unchanged.
Moreover, using the convergence in Equation 3.39, we deduce the convergence in Equa-

tion C.33.
The condition in Equation C.34 is true as depends on the model assumptions.
Altogether, it shows that Theorem 1 holds when using the kennedy method.

C.4.2 Properties of the F Statistic with the freedman lane Per-
mutation Method

The freedman lane permutation method is defined by the transformation {y,D,X} →
{(HD+PRD)y,D,X}. The conditional distribution by permutation of the response under
the freedman lane method is then:

Pr ((Y ∗FL|y) = (HD + PRD)y) = 1
n! ∀ P ∈ P , (C.35)

where P is the set of all n! permutation matrices of size n×n. Moreover, the conditional
distribution of the freedman lane method is a function of the conditional distribution
of the kennedy method as:

Y ∗FL|y = (HDY + Y ∗K) |y. (C.36)
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Its conditional expectation is defined as:

EP [Y ∗FL|y] = HDy, (C.37)

and its conditional variance as:

VarP [Y ∗FL|y] = VarP
[
Y ∗KY

∗ >
K |y

]
= 1
n− 1R1y

>RDy. (C.38)

The permuted statistic under the freedman lane permutation method is rewritten
as:

FY ∗FL = Y ∗ >FL HRDXY
∗
FL / (p− q)

Y ∗ >FL RD,XY ∗FL / (n− p) = Y ∗ >K HRDXY
∗
K / (p− q)

Y ∗ >K RD,XY ∗K / (n− p) . (C.39)

Only the denominator is different from the kennedy method (Equation C.21). For the
numerator, the results of the kennedy method in Appendix C.4.1 hold using freedman lane.
Then, the conditional expectation of the denominator is simply:

EP
[

1
n− p

Y ∗>FLRD,XY
∗
FL|y

]
= 1
n− 1y

>RDy. (C.40)

Moreover, we decompose the denominator using:

1
n− p

Y ∗ >K RD,XY
∗
K = 1

n− p
Y ∗ >K Y ∗K −

p∑
i=1

(
1√
n− p

(Q>D,X:[j])Y ∗ >K

)2

. (C.41)

Concerning the asymptotic results, in the denominator, for the first term ( 1
n−pY

∗ >
K Y ∗K),

results from Equation C.26 and C.27 and implies its convergence in probability to σ2
ε .

Concerning the second term of the denominator, we find:

EP
[

1√
n− p

(Q>D,X:[j])Y ∗ >K |y
]

= 0, (C.42)

and

VarP
[

1√
n− p

(Q>D,X:[j])Y ∗ >K |y
]

= 1
n− p

p− 1
n− 1y

>RDy → 0. (C.43)

Again, using the continuous mapping theorem, we find that the denominator converges
in probability to σ2

ε .
Finally, for the numerator, the results of the kennedy method in Appendix C.4.1 hold

which implies Theorem 1 for the freedman lane method.

C.4.3 Properties of the F Statistic with the terBraak Permu-
tation Method

The terBraak method is the transformation {y,D,X} → {(HD,X + PRD,X)y,D,X}
and we compute the test statistic using another null hypothesis, H0 : β = β̂|y =
(X>RDX)X>RDY |y. This is equivalent than using the response

(
(HD,X + PRD,X)Y − β̂

)
|y

and using the null hypothesis H0 : β = 0. We need this second notation in this chapter
to simplify the computations.
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We then define the conditional distribution by permutation of the terBraak method:

Pr
(
(Y ∗tB|y) =

(
HR,D −X(X>RDX)−1X>RD + PRD,X

)
y
)

= 1
n! ∀ P ∈ P , (C.44)

where P is the set of all n! permutation matrices of size n×n. Y ∗tB is defined using another
conditional distribution as the freedman lane method:
Y ∗tB|y =

(
HR,DY −X(X>RDX)−1X>RDY + Y ∗tB−

)
|y, where

Pr
(
(Y ∗tB−|y) = PRD,Xy

)
= 1
n! ∀ P ∈ P . (C.45)

The conditional expectations of Y ∗tB|y and Y ∗tB−|y over all permutation are:

EP [Y ∗tB|y] = HR,DY −X(X>RDX)−1X>RDY, (C.46)

and

EP
[
Y ∗tB−|y

]
= 0. (C.47)

Their conditional variances are:

VarP [Y ∗tB|y] = VarP
[
Y ∗tB−|y

]
= 1
n− 1R1y

>RX,Dy. (C.48)

The permuted statistic is written as a function of Y ∗tB or Y ∗tB−:

FY ∗tB = Y ∗ >tB HRDXY
∗
tB / (p− q)

Y ∗ >tB RD,XY ∗tB / (n− p) = Y ∗ >tB−HRDXY
∗
tB− / (p− q)

Y ∗ >tB−RD,XY ∗tB− / (n− p) . (C.49)

The conditional expectation under all permutation of the numerator is:

EP
[

1
p− q

Y ∗>tB−HRDXY
∗
tB−|y

]
= 1
n− 1y

>RD,Xy. (C.50)

For the denominator, we have:

EP
[

1
n− p

Y ∗>tB−RD,XY
∗
tB−|y

]
= 1
n− 1y

>RD,Xy. (C.51)

As the freedman lane method, the terBraak method have the same conditional
expectation of the denominator and numerator in small sample size.

To prove asymptotic properties of Equation C.49, we rewrite its numerator:

1
p− q

Y ∗ >tB−HRDXY
∗
tB− =

p−q∑
i=1

(
1√
p− q

Q>RDX:[j]Y
∗
tB−

)2

. (C.52)

Similarly, for the denominator, we have:

1
n− p

Y ∗ >tB−RD,XY
∗
tB− = 1

n− p
Y ∗ >tB−Y

∗
tB− −

p∑
i=1

(
1√
n− p

(Q>X,D:[j])Y ∗ >tB−

)2

. (C.53)
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Under the null hypothesis, the denominator converges in probability as, for the first
part, its asymptotic conditional exception and variance are:

EP
[

1
n− p

Y ∗ >tB−Y
∗
tB−|y

]
= 1
n− p

y>RD,Xy → σ2
ε , (C.54)

and,

VarP
[

1
n− p

Y ∗ >tB−Y
∗
tB−|y

]
= 0. (C.55)

For the second part of the denominator, we also find convergence in probability as its
asymptotic conditional exception and variance are:

EP
[

1√
n− p

(Q>D,X:[j])Y ∗ >tB− |y
]

= 0, (C.56)

and,

VarP
[

1√
n− p

(Q>D,X:[j])Y ∗ >tB− |y
]

= 1
n− p

p− 1
n− 1y

>RD,Xy → 0. (C.57)

Once again, using the continuous mapping theorem, we deduce that the denominator
converges in probability to σ2

ε .
For the numerator, we compute its asymptotic expectation:

EP
[

1√
p− q

(Q>RDX:[j])Y ∗ >tB− |y
]

= 0, (C.58)

and its asymptotic variance:

VarP
[

1√
p− q

(Q>RDX:[j])Y ∗ >tB− |y
]

= 1
(p− q)(n− 1)y

>RD,Xy →
1

p− q
σ2
ε . (C.59)

Then, it is easy to show that the terms in the numerator are equal in distribution to:
1

p− q
(Q>RDX:[i])Y ∗ >−tB |y

d= 1
p− q

(Q∗>RDX:[i])RD,Xy. (C.60)

To prove asymptotic normality of the term in Equation C.60, we need to verify similar
conditions as Equations 3.33, 3.34, 3.35, 3.36 and 3.37. Only conditions involving the
observation y are different which means that condition in Equation 3.33 becomes:

max
i∈1,...,n

∣∣∣∣∣ 1√
n

(R1RD,Xy)i

∣∣∣∣∣→ 0. (C.61)

The condition in Equation 3.34 becomes:
1
n
y>RD,Xy → σ2

ε . (C.62)

Finally, the conditions in Equations 3.35, 3.36 and 3.37 stay unchanged.
Assuming a factorial design, the convergence in Equation C.61 is proven using the

results in Appendix C.2 within each cell.
The condition in Equation C.62 is true as depends on the model assumptions.
Altogether, it shows that Theorem 1 holds when using the terBraak method.
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D.1 Correlation Structure of the rANOVA
In the earlier times when the repeated measures ANOVA model was first discussed, an
abundant literature on the choice of the model and especially on the choice of the corre-
lation structure was written. At that time, the necessity to compute everything by hand
gave constraints on the analysis and all the available test statistics were based on sum
of squares. Under specific assumptions, these statistics possess an exact F distribution.
Let’s first mention that Huynh and Feldt (1970) showed that the sphericity (or circu-
larity) of the covariance structure was a necessary and sufficient condition for an exact
test. Box (1954) and Huynh and Feldt (1976) proposed modifications in the degrees of
freedom – called ε-correction – when this condition is not fulfilled. Note that even earlier,
a discussion was engaged whether to include in the correlation structure the interactions
between the participant and the fixed effects ( (πψ)ik in Equation 4.1), which are now
called the random slopes. Rouanet and Lepine (1970), for example, compare the models
with and without them. Ultimately, the model that includes all random slopes became
the reference and statistical software, like SPSS or Statistica, use it as if it was the only
possible random structure.

On a more technical side, for the fixed effects, some constraints have to be chosen
since the model is otherwise overparametrized and no estimation or test can be obtained
(Cardinal and Aitken, 2013). In order to keep the interpretation of main effects as in the
ANOVA tradition, we use the sigma-restricted parametrizations, which corresponds in
Equation 4.1 to the following constraints: ∑j αj = 0, ∑j(αψ)jk = 0 ∀k and ∑k(αψ)jk =
0 ∀j, and so on. Concerning random slopes, which are technically interactions between a
fixed and a random unit, it is worth asking if this type of constraints should also be also
applied. In a very influential paper, Cornfield and Tukey (1956) , with a construction
called “pigeonhole” that includes both fixed and random factors as special cases, show
that the distributional behaviour for factorial designs lead to constraints only for one
margin: ∑

k(πψ)ik = 0 ∀i , see e.g. Montgomery (2017). If these constraints are not
included e.g. when simulating data, some variances will be inflated.

The discussion in the previous paragraphs shows that there was a debate over several
decades on the best model for rANOVA, both for the fixed part and for the correlation
structure. It is therefore not surprising that concerning the more recently proposed CRE-
MEM, a similar debate is ongoing. It is noteworthy that it concerns exactly the same
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questions on the best correlation structure and the correlation structures for mixed effect
models that are presented in Section 4.5 take root in the above-mentioned literature on
rANOVA.

D.2 The Database Representation of the 5 Types of
Variables

As a complement to Section 4.4, we propose here a generalisation of the “wide” format
for the 5 types of variables. In the rANOVA framework, software like SPSS or Statistica
use data in the “wide” format. This format makes explicit the difference between within-
participant variables (VP ) and between-participant variables (VM), see Figure D.1. Each
line of the data represents one participant and the “data” column are split into between-
participant variables, and columns which values are the response recorded in one level
of the within-participant variables. So, the responses are stored in a two-dimensional
(2D) array which entries, by rows, correspond to the participants and by column to the
within-participants levels. This 2D array is the results of the crossing of one table storing
the participant and VP variables and one table storing the experimental manipulations
and the VM variables.

The “wide” format shows clearly the fundamental difference between within-participant
and between-participant variables. This representation can be extended to CRE-MEM.
In that setting, we cross 3 tables (instead of 2): one for the participants and the variables
VP (Table P ), one for the stimuli and the variables VS (Table S) and one for the exper-
imental manipulations and the variables VM (Table M). The crossing of those 3 tables
creates a 3D array (like a building, of dimension [nP , nS, nM ]) in which the responses
can be stored. This construction is represented in the Figure D.2. In this example, each
participant is represented by one row of the Table P and each stimulus is represented
by one row (here rotated by 90◦) of the Table S. Then, the responses of one participant
are a stored in one “floor” (of dimension [1, nS, nM ]), the responses of one stimulus are
stored in one “vertical slide” from forefront to back (of dimension [nP , 1, nM ]) and the
responses in one experimental manipulation is one “slice” (of dimension [nP , nS, 1]) of
the 3D array. The responses associated to one pair participant-stimulus is consequently a
“pile” (of dimension [1, 1, nM ]) of the 3D array. Note that to simplify the representation
the variables VPS and VO are not represented in Figure D.2. However, they could be as-
sociated both to their own table (Table PS and Table O) and each entry of the Table PS
would be associated with one “pile” of the 3D array. Finally, each entry of the Table O
would be associated with one cell of the 3D array.

This representation is a tool to understand which interactions between fixed effects and
random units are allowed in a model. Each “floor” (the responses by participants) crosses
all levels of the VS and VM variables, which implies that participants are measured in all
levels of VS and VM . Moreover each “floor” is composed of multiple “piles” and multiple
“cells” which means that a participant will be measured in multiple levels of the variables
VPS and VO. All the random interactions participant:VS, participant:VM , participant:VPS,
participant:VO are then allowed for CRE-MEM. The same rational is applied for stimuli:
each stimulus is represented in by one “vertical slide” and will be measured in all lev-
els of the VP and VM , then the random interaction stimuli:VP , stimuli:VM , stimuli:VPS,
stimuli:VO are feasible. To understand which random slopes associated to the interac-
tion participants:stimuli can be included in the model we apply the same strategy for
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the “pile” and each interaction crosses all levels of the variables VM . And each “pile””
is composed of multiple cells (which are associated to variables VO). Which means that
the random interactions between participants:stimuli:VM and participants:stimuli:VO are
feasible. These findings are summarized in Table 4.1.

Table P: Participants and VP

Participant Group …

Participant 1 AT

Participant 2 SC

…

Participant nP-1 AT

Participant nP SC

Ta
b

le
 M

: M
a

n
ip

u
la

ti
o

n
a

n
d

 V
M …

Ti
m
e

B
L

1
Y

M
an

ip
u
la
ti
o
n

M
an

ip
 1

… M
an

ip
 n

M

2D array: 
Response Variable ( 𝑦𝒑𝒎)

Responses of 1 participant

Actual data in the wide format

Figure D.1: Representation of the variables and the responses of a rANOVA in the ”wide”
format. The responses are stored in a 2D array that stem from the crossing of 2 tables. Ta-
ble P stores the participants and their features VP (or between-participant variables) and
Table M stores the features of the experimental manipulations VM (or within-participant
variables).
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𝑦𝑠𝑖𝑤𝑟

Table P: Participants and VP

Participant Race …

Participant 1 B

Participant 2 W

…

Participant nP-1 B

Participant nP W

3D array: 
Response Variable ( 𝑦𝒑𝒔𝒎)

Ta
b
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: S
ti

m
u

li
a

n
d

 V
S

…
Si
ze

St
im

u
li

St
im

u
li 

1

St
im
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2
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u
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n
S
–

1

St
im

u
li 

n
S

Table M: Manipulations and VM

Manipulation Presentation …

Manip 1 N

…

Manip nM C

Response of one participant

Response of one stimulus

Response of the interaction of 
one participant and one stimulus

Figure D.2: Representation of the variables and the responses of CRE-MEM. The re-
sponses are stored in a 3D array that is the result of the crossing of Table P , Table S
and Table M . Participants are associated with the Table P and the levels of variable VP
will be identical for each ”floor”. Stimuli are associated with the Table S and variables VS
will takes the same value for each ”vertical slide”. And the experimental manipulations
are associated with the Table M and each ”slice” of the 3D array.

D.3 Matrix Formulation of the CRE-MEM

D.3.1 General Notation for Mixed Models
Following Bates et al. (2015), we define the mixed linear model:

y = Xβ + Zγ + ε (D.1)

where y is the response, the fixed part of the design is X and the random part is Z. The
fixed parameters are β, the random effects are γ ∼ (0,Σ) and the error terms are ε ∼
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(0, σ2I). For a CRE-MEM, we split the random effects into G independent components
γ =

[
γ>1 | . . . |γ>g | . . . |γ>G

]>
and their associated design matrices Z = [Z1| . . . |Zg| . . . |ZG]

which led to the decomposition of the covariance matrix of the random effects into Σ =
diag(Σ1, . . . ,Σg, . . . ,ΣG). The covariance matrix of the response variable y can then be
written as Ω = ZΣZ> + Iσ2 = Z1Σ1Z

>
1 + · · ·+ ZgΣgZ

>
g + · · ·+ ZGΣGZ

>
G + Iσ2.

D.3.2 Generalized ANOVA and RI-L for the CRE-MEM
The gANOVA is written following the Equation D.1 with specific constraints on the ran-
dom effects. Independence between random components is specified using γ =

[
γ>P |γ>S |γ>P :S

]>
and by defining a covariance matrix of observations split into the parts relative to partic-
ipants, stimuli and their interactions:

Ω = ZΣZ> + Iσ2 = ZPΣPZ
>
P + ZSΣSZ

>
S + ZP :SΣP :SZ

>
P :S + Iσ2, (D.2)

where ZP =
(
X>parti ∗ [1|XS|XPS|XM |XO]>

)>
, ZS =

(
X>stimulus ∗ [1|XP |XPS|XM |XO]>

)>
,

ZP :S =
(
(X>parti ∗X>stimulus) ∗ [1|XM |XO]>

)>
and the Khatri-Rao product (Khatri and

Rao, 1968) is written using ∗. Xparti and Xstimulus are matrices dummy coding xxoli est
ce bien des 0/1 for the participants and stimuli, and ΣP , ΣS, ΣP :S are covariance matrices.

If the dataset has no missing value and after the appropriate permutation (PP ,PS and
PPS), the covariance matrices are written as block diagonal matrices of the individual
covariance structure: ΣP = PP (IP⊗Σ0

P )P>P , ΣS = PS(IS⊗Σ0
S)P>S and ΣP :S = PP :S(IP :S⊗

Σ0
P :S)P>P :S. gANOVA assumes that the matrices Σ0

P , Σ0
S and Σ0

PS are diagonal matrices
with the same value for the random effects (i.e. contrasts) associated to the same factor.

For gANOVA, the X· matrices XS, XP , XPS, XM and XO are written using orthonor-
mal contrasts C· (e.g.: contr.poly) and overparametrized dummy-coded design matrices
X0
· such that X· = X0

· C
−
· where C−· is the generalized inverse of C·. If C· is orthonormal

gives the properties C·C−· = I and C−· C
−>
· = I − a11> where a is a positive value that

depends on the dimension of C·.
Concerning the RI-L model, the only difference with gANOVA is that there is no con-

straints on the random effects. Its matrix formulation is therefore the same as gANOVA
except that the contrasts C· are not used (or are replaced by an identity matrix I). Note
that the X0

· matrices are used to construct the fixed part of the design and are usually as-
sociated with contrasts. Depending on the hypothesis, these contrasts may be represented
by non-orthonormal matrices (e.g.: using contr.sum).

D.4 Comparison of the gANOVA and RI-L Model
In this appendix, we provide evidence that gANOVA has a better decomposition of the
correlation structure than RI-L. For the sake of the argument, we focus the comparison to
a model with only one sampling unit (the participants), balanced design and replications
(one variable VM), which means that there will be 3 variances parameters: one for random
intercepts, one for the random slopes and one for the residuals. The replications will make
the variance of the random slopes estimable. The gANOVA and RI-L correlation structure
differ by the constraints on the random effects and those constraints are represented by
contrast matrices. We will call constraint (c) the design of gANOVA and unconstraint (uc)
the one of RI-L.
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RI−L: σ space.
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Figure D.3: Likelihood of RI-L and gANOVA for a model with one sampling units and 1
variable VM with replications and assuming random intercepts and random slopes. The
two top figures represent the likelihood in the σ parameters space (standard deviation
of random effects), and two bottom one represents the θ parameters space (space of
optimization parameters; see Equation (4) in Bates et al. (2015) for an exact definition
of the θ’s.). The dotted lines are the two ridges defining the profile likelihoods. We see
in this example that the gANOVA tends to orthogonalize the profile likelihoods as they
cross almost at a 90◦ angle, which suggest less dependency of the two parameters and an
easier optimization process.

In that setting, the RI-L model is written:

y = Xβ + Zucγuc + ε,

where γuc ∼ (0, INP ⊗ Σuc), ε = (0, Iσ2
uc;ε) for NP the number of participants. Σuc is a

diagonal covariance matrix of dimension NM + 1: Σuc = diag(σ2
uc;i, INMσ

2
uc;T ).
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The design matrix of the random effects is written Zuc =
(
Z> ∗

[
1 Xuc

]>)>
and

∗ denotes the column-wise Khatri-Rao product (Khatri and Rao, 1968). Assuming a
balanced design, we write:

Zuc =
(

(1NP ⊗ INM+1)> ∗
[
1 1NP ⊗Xuc;p

]>)>
=
(
INP ⊗

[
1NM Xuc;p

])
,

where Xuc;p is a NMNR × NM matrix representing the overparametrized design of one
participant for a VM factor of NM levels and assuming NR replications in each cell. The
covariance matrix of the response y is:

Zuc(INP ⊗ Σuc)Z>uc + Iσ2
uc;ε =

(
INP ⊗

[
1NM Xuc;p

])
(INP ⊗ Σuc)

(
INP ⊗

[
1NM Xuc;p

]>)
+ Iσ2

uc;ε

=
(
INP ⊗

[
1NM Xuc;p

]) (
INP ⊗ Σuc

[
1NM Xuc;p

]>)
+ Iσ2

uc;ε

= INP ⊗ (
[
1NM Xuc;p

]
Σuc

[
1NM Xuc;p

]>
) + Iσ2

uc;ε

= INP ⊗ (
[
1NM Xuc;p

]
Σuc

[
1NM Xuc;p

]>
+ INMσ

2
uc;ε).

The covariance matrix of the response is a block diagonal matrix with block-elements
of the form:[
1NM Xuc;p

]
Σuc

[
1NM Xuc;p

]>
+ INMσ

2
uc;ε = 1NM1>NMσ

2
uc;i +Xuc;pX

>
uc;pσuc;F + INMσ

2
uc;ε.

Similarly, gANOVA is written:

y = Xβ + Zcγc + ε,

where γc ∼ (0, INP ⊗ Σc), ε = (0, Iσ2
c;ε). Σc is a diagonal matrix covariance matrix of

dimension NM : Σc = diag(σ2
c;i, INM−1σ

2
c;T ).

The design matrix of the random effects is written using the orthonormal contrast
C: Zc =

(
Z> ∗

[
1 XucC

−
]>)>

and assuming that it is balanced, it becomes: Zc =(
INP ⊗

[
1 Xuc;pC

−
])

. The covariance matrix of the response is then:

Zc(INP ⊗ Σc)Z>c + Iσ2
c;ε = INP ⊗

([
1NM Xc;p

]
Σc

[
1NM Xc;p

]>
+ INMσ

2
c;ε

)
= INP ⊗

([
1NM Xuc;pC

−
]

Σc

[
1NM Xuc;pC

−
]>

+ INMσ
2
c;ε

)
.

Using the properties of the orthonormal contrasts, the block-elements of the covariance
matrix simplify:
[
1NM Xuc;pC

−
]

Σc

[
1NM Xuc;pC

−
]>

+ INMσ
2
c;ε = 1NM1>NM σ2

c;i +Xuc;pC
−C−>X>uc;pσc;F + Iσ2

c;ε

= 1NM1>NMσ
2
c;i +Xuc;p(I − 11>a)X>uc;pσc;F + Iσ2

c;ε

= 1NM1>NM (σ2
c;i − aσ2

c;F ) +Xuc;pX
>
uc;pσc;F + Iσ2

c;ε,
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with positive value a defined by the number of levels of VM : a = 1−1/NM . The covariance
matrices of the 2 models are equal if and only if:

σ2
uc;i = σ2

c;i − aσ2
c;F

σ2
uc;F = σ2

c;F

σ2
uc;ε = σ2

c;ε.

These equalities show us that the 2 models are equal for values of the variances of
random effects. But, the first equality tells us that the 2 models are not equal when
σ2
c;i < aσ2

c;F . Which means that adding the constraint of the contrasts C increases the
possible covariance matrices of the observations. With more factors in the model, higher
level interactions put similar conditions on lower level interactions. The RI-L model will
produce more estimates equal to 0 with maximal values of the optimal function at the
boundary of the parameter space. And, when RI-L and gANOVA are not equal, gANOVA
will always have a better likelihood which suggests a better fit of the model.

D.5 Examples of lme4 Formulas for CRE-MEM with
Different Correlation Structures

In this appendix, some examples of R formula from simple to more complex designs (see
Table 4.2 for the selected designs). The type of variable is explained in the Section 4.4.
We use the notation PT and SM for the identifier variables of the participants and stimuli
respectively and y for the response variable. All those variables and the design will be
variables of the mydata dataframe. To interpret correctly main effects as in the ANOVA
framework, it is extremely important to use contrasts that sum to zero (like contr.sum
or contr.poly) and not the contr.treat default in R). The fixed part will be assumed to
be a full factorial design in each case. For saturated design, we drop the last interaction
term because we assume no replication of the same observations (multiple observations
associated to the same cell in the design) and the last interaction terms would not be
estimable because it is confounded with the error terms.

Using factors in the formula will not produce always the model that the users expect.
R assigns to factors the maximum degree of freedom (some sort of contrasts) available
which means that, for the factors A and B with 2 levels, using the formula ˜A*B and
˜A:B will assign respectively 1 and 3 degrees of freedom for the interaction A:B; one other
example is ˜A and ˜0 + A which assign 1 and 2 degrees of freedom for the effect of A. In
lme4, this feature happens when R compute separately the effects; for instance, ˜(1|PT)
+ (A|PT) will assign 2 variances (+ 1 covariance) for the levels of A and ˜(A*B||PT)
will assign 4 variances (+6 covariances) for the interaction A:B. In order to produce the
correlation structures described in the Section 4.5, the solution is to convert factors into
numeric variables, we use the model.matrix() function for that purpose.

D.5.1 A Simple Case, Variables VP (2), VS(2) and VM(2)
This design corresponds to model M1 in Table 4.3. In that simple case, the saturated
correlation structure will not have the last term of interaction between the variable VM
and the random units participant:stimulus. With only 2 levels per factor, the “sum”
coding will produce similar results to the polynomial coding variable.
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RI and RI+

R> lmer(y ˜ Vp*Vs*Vm + (1|PT) + (1|SM) + (1|PT:SM), data = mydata)

RI-L and RI-L+

R> lmer(y ˜ Vp*Vs*Vm + (1|PT) + (1|PT:Vs) + (1|PT:Vm) + (1|PT:Vs:Vm)
R> + (1|SM) + (1|SM:Vp) + (1|SM:Vm) + (1|SM:Vp:Vm)
R> + (1|PT:SM), data = mydata)

MAX and MAX+

R> lmer(y ˜ Vp*Vs*Vm + (Vs*Vm|PT) + (Vp*Vm|SM) + (1|PT:SM), data = mydata)

ZCP and ZCP+

R> mydata$Xs <- model.matrix(˜ Vs, data = mydata)[, -1]
R> mydata$Xp <- model.matrix(˜ Vp, data = mydata)[, -1]
R> mydata$Xm <- model.matrix(˜ Vm, data = mydata)[, -1]
R> lmer(y ˜ Vp*Vs*Vm + (Xs*Xm||PT) + (Xp*Xm||SM) + (1|PT:SM), data = mydata)

gANOVA and gANOVA+

The gANOVA package use the same notation as the RI-L formula ( + (1|PT) + (1|PT:f1)
+ (1|PT:f2) + (1|PT:f1:f2)) and puts orthonormal coding from the second factors of
the right part of the random effect. Doing so, the order of the factors matters and the
first variable to the right of the bar must be the random unit. Note that it implies that
the interaction participant-stimulus should be written as only one variable. Moreover,
the multiple terms in the notation can be reduced to the formula + (1|PT|f1*f2). Then
gANOVA is specified using:

R> mydata$PTSM <- interaction(mydata$PT, mydata$SM)
R>
R> gANOVA(y ˜ Vp*Vs*Vm + (1|PT) + (1|PT:Vs) + (1|PT:Vm) + (1|PT:Vs:Vm)
R> + (1|SM) + (1|SM:Vp) + (1|SM:Vm)+ (1|SM:Vp:Vm)
R> + (1|PTSM), data = mydata)

or equivalently:

R> mydata$PTSM <- interaction(mydata$PT, mydata$SM)
R>
R> gANOVA(y ˜ Vp*Vs*Vm + (1|PT|Vs*Vm)+ (1|SM|Vp*Vm) + (1|PTSM),
R> data = mydata)

D.5.2 A Common Case, Variables VP (3), VS(3), VM(3) and VM(2)
This design corresponds to model M3 in Table 4.3. The last interaction terms is con-
founded with the error term is the interaction between the 2 variables VM1, VM2 and the
participant:stimulus random unit.
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RI and RI+

R> lmer(y ˜ Vp*Vs*Vm1*Vm2 + (1|PT) + (1|SM) + (1|PT:SM), data = mydata)

RI-L and RI-L+

R> lmer(y ˜ Vp*Vs*Vm1*Vm2 + (1|PT) + (1|PT:Vs) + (1|PT:Vm1) + (1|PT:Vm2)
R> + (1|PT:Vs:Vm1) + (1|PT:Vs:Vm2) + (1|PT:Vm1:Vm2) + (1|PT:Vs:Vm1:Vm2)
R> + (1|SM) + (1|SM:Vp) + (1|SM:Vm1) + (1|SM:Vm2) + (1|SM:Vp:Vm1)
R> + (1|SM:Vp:Vm2) + (1|SM:Vm1:Vm2) + (1|SM:Vp:Vm1:Vm2)
R> + (1|PT:SM) + (1|PT:SM:Vm1) + (1|PT:SM:Vm2), data = mydata)

MAX and MAX+

With more than two levels, it is not advisable to use the sum coding for the random part
and we must create new factors with the appropriate coding variable. Moreover, lmer does
not handle different type of coding for the fixed part and the random part. We suggest
creating new variables with the appropriate coding. Here we choose the orthonormal
contr.poly coding:

R> mydata$VpPoly <- mydata$Vp; contrasts(mydata$VpPoly) <- contr.poly
R> mydata$VsPoly <- mydata$Vs; contrasts(mydata$VsPoly) <- contr.poly
R> mydata$Vm1Poly <- mydata$Vm1; contrasts(mydata$Vm1Poly) <- contr.poly
R> mydata$Vm2Poly <- mydata$Vm2; contrasts(mydata$Vm2Poly) <- contr.poly
R>
R> lmer(y ˜ Vp*Vs*Vm1*Vm2 + (VsPoly*Vm1Poly*Vm2Poly|PT)
R> + (VpPoly*Vm1Poly*Vm2Poly|SM)
R> + (Vm1Poly + Vm2Poly|PT:SM), data = mydata)

ZCP and ZCP+

For ZCP, we transform the factors into orthonormal coding variable. We first need to set
the coding using the procedure described in the previous section. Then, we transform the
factors into numeric variables using the model.matrix() function.

R> dataVp <- data.frame(model.matrix( ˜ VpPoly, data = mydata)[,-1])
R> colnames(dataVp) <- c("Xpa", "Xpb")
R>
R> dataVs <- data.frame(model.matrix( ˜ VsPoly, data = mydata)[,-1])
R> colnames(dataVs) <- c("Xsa", "Xsb")
R>
R> dataVm1 <- data.frame(model.matrix( ˜ Vm1Poly, data = mydata)[,-1])
R> colnames(dataVm1) <- c("Xm1a", "Xm1b")
R>
R> dataVm2 <- data.frame(model.matrix( ˜ Vm2Poly, data = mydata)[,-1])
R> colnames(dataVm2) <- c("Xm2a")
R>
R> mydata <- cbind(mydata, dataVp, dataVs, dataVm1, dataVm2)
R>
R> lmer(y ˜ Vp*Vs*Vm1*Vm2 + ((Xsa + Xsb)*(Xm1a + Xm1b)*Xm2a||PT)
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R> + ((Xpa + Xpb)*(Xm1a + Xm1b)*Xm2a||SM)
R> + (Xm1a + Xm1b + Xm2a||PT:SM), data = mydata)

gANOVA and gANOVA+

As explained previously, the interaction participant:stimuli should be written as only one
variable when we can run the gANOVA function:

R> mydata$PTSM <- interaction(mydata$PT, mydata$SM)
R>
R> gANOVA(y ˜ Vp*Vs*Vm1*Vm2 + (1|PT|Vs*Vm1*Vm2) + (1|SM|Vp*Vm1*Vm2)
R> + (1|PTSM|Vm1+Vm2), data = mydata)

D.5.3 A Complex Case, Variables VP (3), VS(3), VM(3), VM(2),
VPS(2), VO(2)

This design corresponds to model M5 of Table 4.3. The last interaction term confounded
with the error term is the interaction between the 3 variables VM1, VM2, VO and the
participant:stimulus random unit.

RI and RI+

R> lmer(y ˜ Vp*Vs*Vm1*Vm2*Vps*Vo + (1|PT) + (1|SM) + (1|PT:SM), data = mydata)

RI-L and RI-L+

R> lmer(y ˜ Vp*Vs*Vm1*Vm2*Vps*Vo + (1|PT) + (1|PT:Vs) + (1|PT:Vm1) + (1|PT:Vm2)
R> + (1|PT:Vps) + (1|PT:Vo) + (1|PT:Vs:Vm1) + (1|PT:Vs:Vm2) + (1|PT:Vs:Vmsi)
R> + (1|PT:Vs:Vo) + (1|PT:Vm1:Vm2) + (1|PT:Vm1:Vps) + (1|PT:Vm1:Vo)
R> + (1|PT:Vm2:Vps) + (1|PT:Vm2:Vo) + (1|PT:Vps:Vo) + (1|PT:Vs:Vm1:Vm2)
R> + (1|PT:Vs:Vm1:Vps) + (1|PT:Vs:Vm1:Vo) + (1|PT:Vs:Vm2:Vmsi)
R> + (1|PT:Vs:Vps:Vo)
R> + (1|PT:Vm1:Vm2:Vps) + (1|PT:Vm2:Vps:Vo) + (1|PT:Vs:Vm1:Vm2:Vps)
R> + (1|PT:Vs:Vm1:Vm2:Vo) + (1|PT:Vs:Vm1:Vps:Vo) + (1|PT:Vs:Vm2:Vps:Vo)
R> + (1|PT:Vm1:Vm2:Vps:Vo) + (1|PT:Vs:Vm1:Vm2:Vps:Vo)
R> + (1|SM) + (1|SM:Vp) + (1|SM:Vm1) + (1|SM:Vm2)
R> + (1|SM:Vps) + (1|SM:Vo) + (1|SM:Vp:Vm1) + (1|SM:Vp:Vm2) + (1|SM:Vp:Vmsi)
R> + (1|SM:Vp:Vo) + (1|SM:Vm1:Vm2) + (1|SM:Vm1:Vps) + (1|SM:Vm1:Vo)
R> + (1|SM:Vm2:Vps) + (1|SM:Vm2:Vo) + (1|SM:Vps:Vo) + (1|SM:Vp:Vm1:Vm2)
R> + (1|SM:Vp:Vm1:Vps) + (1|SM:Vp:Vm1:Vo) + (1|SM:Vp:Vm2:Vmsi)
R> + (1|SM:Vp:Vps:Vo)
R> + (1|SM:Vm1:Vm2:Vps) + (1|SM:Vm2:Vps:Vo) + (1|SM:Vp:Vm1:Vm2:Vps)
R> + (1|SM:Vp:Vm1:Vm2:Vo) + (1|SM:Vp:Vm1:Vps:Vo)+ (1|SM:Vp:Vm2:Vps:Vo)
R> + (1|SM:Vm1:Vm2:Vps:Vo) + (1|SM:Vp:Vm1:Vm2:Vps:Vo)
R> + (1|PT:SM) + (1|PT:SM:Vm1) + (1|PT:SM:Vm2) + (1|PT:SM:Vo)
R> + (1|PT:SM:Vm1:Vm2) + (1|PT:SM:Vm1:Vo) + (1|PT:SM:Vm2:Vo),
R> data = mydata)
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MAX and MAX+
We set the orthonormal coding using the following functions. Note that the variables with
2 levels do not need to change from coding of type “sum” to coding of type “polynomial”.

R> mydata$VpPoly <- mydata$Vp; contrasts(mydata$VpPoly) <- contr.poly
R> mydata$VsPoly <- mydata$Vs; contrasts(mydata$VsPoly) <- contr.poly
R> mydata$Vm1Poly <- mydata$Vm1; contrasts(mydata$Vm1Poly) <- contr.poly
R> mydata$Vm2Poly <- mydata$Vm2; contrasts(mydata$Vm2Poly) <- contr.poly
R> mydata$VpsPoly <- mydata$Vps; contrasts(mydata$VpsPoly) <- contr.poly
R> mydata$VoPoly <- mydata$Vo; contrasts(mydata$VoPoly) <- contr.poly

R> lmer(y ˜ Vp*Vs*Vm1*Vm2*Vps*Vo + (VsPoly*Vm1Poly*Vm2Poly*VpsPoly*VoPoly|PT)
R> + (VpPoly*Vm1Poly*Vm2Poly*VpsPoly*VoPoly|SM)
R> + (Vm1Poly + Vm2Poly + VoPoly + Vm1Poly:PolyVm2 + Vm1Poly:VoPoly
R> + Vm2Poly:VoPoly|PT:SM),
R> data = mydata)

ZCP and ZCP+
See the MAX model to change the coding of the factors.

R> dataVp <- data.frame(model.matrix( ˜ VpPoly, data = mydata)[,-1])
R> colnames(dataVp) <- c("Xpa", "Xpb")
R>
R> dataVs <- data.frame(model.matrix( ˜ VsPoly, data = mydata)[,-1])
R> colnames(dataVs) <- c("Xsa", "Xsb")
R>
R> dataVm1 <- data.frame(model.matrix( ˜ Vm1Poly, data = mydata)[,-1])
R> colnames(dataVm1) <- c("Xm1a", "Xm1b")
R>
R> mydata$Xm2 <- model.matrix( ˜ Vm2Poly, data = mydata)[, -1]
R> mydata$Xps <- model.matrix( ˜ VpsPoly, data = mydata)[, -1]
R> mydata$Xo <- model.matrix( ˜ VoPoly, data = mydata)[, -1]
R>
R> mydata <- cbind(mydata,dataVp,dataVs,dataVm1)

R> lmer(y ˜ Vp*Vs*Vm1*Vm2*Vps*Vo + ((Xsa+Xsb)*(Xm1a+Xm1b)*Xm2*Xps*Xo||PT)
R> + ((Xpa+Xpb)*(Xm1a+Xm1b)*Xm2*Xps*Xo||SM)
R> + ((Xm1a+Xm1b)+Xm2+Xo + (Xm1a+Xm1b):Xm2 + (Xm1a+Xm1b):Xo + Xm2:Xo||PT:SM),
R> data = mydata)

gANOVA and gANOVA+

R> mydata$PTSM <- interaction(mydata$PT, mydata$SM)
R>
R> gANOVA(y ˜ Vp*Vs*Vm1*Vm2*Vps*Vo + (1|PT|Vs*Vm1*Vm2*Vps*Vo)
R> + (1|SM|Vp*Vm1*Vm2*Vps*Vo)
R> + (1|PTSM|Vm1 + Vm2 + Vo + Vm1:Vm2 + Vm1:Vo + Vm2:Vo),
R> data = mydata)



Appendix E

Supplementary Simulation Results
for Chapter 4

E.1 Results of simulation: type I error rate

Table E.1: List of 5 typical experimental designs.
Model Variables Use
M1 Vp(2), Vs(2), Vm(2) F/S
M2 Vp(3), Vs(3), Vm(3) S
M3 Vp(3), Vs(3), Vm(3), Vm(2) F
M4 Vp(3), Vs(3), Vm(3), Vps(2) S
M5 Vp(3), Vs(3), Vm(3), Vm(2), Vps(2), Vo(2) F
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E.1.1 Design M1

Table E.2: Type I error rate of the design M1 (see Table E.1): The data are simulated
using spherical random effects and 18 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.082 .050 .050 .050 .050 .050 .050no PT:SM
[.074;.091] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.043;.057]
.082 .050 .050 .050 .050 .050 .050

Vp

PT:SM
[.074;.091] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.043;.057]

.086 .049 .049 .049 .049 .049 .049no PT:SM
[.078;.095] [.043;.056] [.043;.056] [.043;.056] [.043;.056] [.043;.056] [.043;.056]
.088 .049 .049 .049 .049 .049 .049

Vs

PT:SM
[.080;.098] [.043;.056] [.043;.057] [.043;.056] [.043;.056] [.043;.056] [.043;.056]

.378 .050 .050 .050 .050 .050 .056no PT:SM
[.363;.393] [.043;.057] [.043;.057] [.044;.058] [.044;.058] [.044;.058] [.049;.064]
.387 .050 .050 .050 .050 .050 .053

Vm

PT:SM
[.372;.403] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.046;.060]

.408 .049 .048 .048 .048 .048 .048no PT:SM
[.393;.423] [.043;.056] [.042;.055] [.042;.055] [.042;.055] [.042;.055] [.042;.055]
.461 .049 .048 .049 .048 .048 .049

Vp:Vs

PT:SM
[.446;.476] [.043;.056] [.042;.055] [.042;.056] [.042;.056] [.042;.056] [.043;.056]

.308 .050 .048 .049 .049 .049 .076no PT:SM
[.294;.322] [.044;.058] [.042;.055] [.043;.056] [.043;.056] [.043;.056] [.069;.085]
.319 .050 .048 .049 .049 .049 .070

Vp:Vm

PT:SM
[.305;.334] [.043;.057] [.042;.055] [.043;.056] [.043;.056] [.043;.056] [.062;.078]

.271 .048 .046 .047 .047 .047 .070no PT:SM
[.258;.285] [.042;.055] [.040;.053] [.041;.054] [.041;.054] [.041;.054] [.063;.079]
.283 .047 .046 .046 .046 .046 .067

Vs:Vm

PT:SM
[.270;.298] [.041;.054] [.040;.053] [.040;.053] [.040;.053] [.040;.053] [.060;.075]

.162 .048 .044 .048 .048 .048 .167no PT:SM
[.151;.174] [.042;.055] [.038;.051] [.042;.055] [.042;.055] [.042;.055] [.156;.179]
.171 .047 .045 .048 .048 .048 .162

Vp:Vs:Vm

PT:SM
[.159;.183] [.041;.054] [.039;.052] [.042;.055] [.042;.055] [.042;.055] [.151;.174]
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Table E.3: Estimated type I error rate of the model M1 (see Table E.1): The data are
simulated using correlated random effects and 18 stimuli and its represents the subset of
model estimated without assuming random effects associated to the interaction partici-
pants:stimuli.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

.076 .050 .049 .051 .050 .050 .051no PT:SM
[.068;.084] [.043;.057] [.043;.057] [.044;.058] [.044;.058] [.044;.058] [.045;.059]
.076 .047 .045 .047 .047 .047 .048

Vp

PT:SM
[.068;.085] [.041;.054] [.039;.053] [.041;.054] [.041;.054] [.041;.054] [.042;.055]

.087 .046 .044 .046 .046 .046 .047no PT:SM
[.078;.096] [.040;.053] [.038;.051] [.040;.053] [.040;.053] [.040;.053] [.041;.054]
.093 .049 .048 .050 .050 .050 .051

Vs

PT:SM
[.084;.102] [.043;.056] [.041;.055] [.043;.057] [.043;.057] [.043;.057] [.044;.058]

.336 .053 .046 .053 .053 .053 .281no PT:SM
[.321;.350] [.047;.061] [.040;.053] [.047;.060] [.046;.060] [.046;.060] [.267;.295]
.378 .050 .044 .050 .050 .050 .212

Vm

PT:SM
[.363;.393] [.044;.057] [.038;.051] [.043;.057] [.043;.057] [.043;.057] [.200;.226]

.444 .050 .047 .049 .049 .049 .051no PT:SM
[.429;.460] [.044;.058] [.041;.054] [.043;.056] [.043;.056] [.043;.056] [.045;.058]
.494 .051 .048 .051 .050 .050 .052

Vp:Vs

PT:SM
[.479;.510] [.045;.058] [.042;.056] [.044;.058] [.044;.058] [.044;.058] [.046;.059]

.250 .052 .040 .052 .052 .052 .246no PT:SM
[.237;.264] [.046;.060] [.034;.047] [.045;.059] [.046;.060] [.046;.060] [.233;.259]
.286 .049 .041 .049 .049 .049 .233

Vp:Vm

PT:SM
[.273;.301] [.043;.056] [.035;.048] [.043;.056] [.043;.056] [.043;.056] [.220;.246]

.237 .052 .039 .052 .052 .052 .237no PT:SM
[.224;.250] [.046;.060] [.033;.046] [.046;.060] [.046;.060] [.046;.060] [.224;.250]
.275 .053 .046 .053 .053 .053 .222

Vs:Vm

PT:SM
[.261;.289] [.047;.061] [.039;.053] [.047;.061] [.047;.061] [.047;.061] [.210;.236]

.121 .049 .027 .047 .047 .047 .160no PT:SM
[.111;.132] [.043;.056] [.023;.033] [.041;.054] [.041;.054] [.041;.054] [.149;.172]
.148 .047 .036 .047 .046 .046 .199

Vp:Vs:Vm

PT:SM
[.138;.160] [.041;.054] [.030;.042] [.040;.054] [.040;.054] [.040;.054] [.187;.212]
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Table E.4: Type I error rate of the model M1 (see Table E.1): The data are simulated
using correlated random effects and 18 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.076 .051 .050 .052 .052 .052 .052no PT:SM
[.068;.084] [.045;.058] [.044;.058] [.046;.060] [.046;.060] [.046;.060] [.046;.060]
.076 .047 .047 .047 .047 .047 .048

Vp

PT:SM
[.068;.085] [.041;.054] [.041;.054] [.041;.054] [.041;.054] [.041;.054] [.042;.055]

.087 .047 .044 .047 .047 .047 .047no PT:SM
[.078;.096] [.041;.054] [.038;.051] [.041;.054] [.041;.054] [.041;.054] [.041;.054]
.093 .050 .048 .050 .050 .050 .050

Vs

PT:SM
[.084;.102] [.043;.057] [.042;.056] [.044;.057] [.044;.057] [.044;.057] [.044;.058]

.376 .052 .048 .051 .051 .051 .240no PT:SM
[.361;.391] [.045;.059] [.042;.055] [.045;.059] [.045;.059] [.045;.059] [.228;.254]
.394 .050 .044 .050 .050 .050 .205

Vm

PT:SM
[.380;.410] [.044;.057] [.038;.051] [.043;.057] [.043;.057] [.043;.057] [.193;.218]

.402 .052 .047 .050 .050 .050 .052no PT:SM
[.387;.417] [.045;.059] [.041;.055] [.044;.058] [.044;.058] [.044;.058] [.046;.060]
.480 .051 .050 .051 .051 .051 .052

Vp:Vs

PT:SM
[.464;.495] [.045;.059] [.043;.058] [.044;.058] [.044;.058] [.044;.058] [.046;.059]

.290 .048 .041 .048 .048 .048 .231no PT:SM
[.277;.305] [.042;.055] [.035;.048] [.042;.055] [.042;.055] [.042;.055] [.219;.245]
.300 .049 .043 .048 .048 .048 .229

Vp:Vm

PT:SM
[.286;.315] [.043;.056] [.037;.050] [.042;.056] [.042;.056] [.042;.056] [.216;.242]

.283 .046 .038 .046 .046 .046 .226no PT:SM
[.269;.297] [.040;.054] [.033;.045] [.040;.054] [.040;.054] [.040;.054] [.213;.239]
.289 .052 .048 .053 .053 .053 .217

Vs:Vm

PT:SM
[.275;.303] [.046;.060] [.041;.055] [.046;.060] [.046;.060] [.046;.060] [.205;.230]

.163 .044 .029 .043 .043 .043 .180no PT:SM
[.152;.175] [.039;.051] [.024;.035] [.037;.050] [.037;.050] [.037;.050] [.169;.193]
.159 .046 .035 .046 .046 .046 .200

Vp:Vs:Vm

PT:SM
[.148;.171] [.040;.053] [.030;.042] [.040;.053] [.040;.053] [.040;.053] [.187;.212]
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Table E.5: Type I error rate of the model M1 (see Table E.1): The data are simulated using
spherical random effects and 36 stimuli and its represents the subset of model estimated
assuming random effects associated to the interaction participants:stimuli.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

.068 .050 .051 .051 .051 .051 .051no PT:SM
[.061;.077] [.043;.057] [.045;.058] [.045;.058] [.045;.058] [.045;.058] [.045;.058]
.070 .051 .052 .052 .052 .052 .052

Vp

PT:SM
[.062;.078] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059]

.144 .053 .053 .053 .053 .053 .053no PT:SM
[.134;.156] [.046;.060] [.046;.060] [.046;.060] [.046;.060] [.046;.060] [.046;.060]
.147 .054 .054 .054 .054 .054 .054

Vs

PT:SM
[.137;.159] [.048;.062] [.048;.062] [.048;.062] [.048;.062] [.048;.062] [.048;.062]

.419 .051 .051 .050 .051 .050 .051no PT:SM
[.404;.435] [.045;.058] [.044;.058] [.044;.058] [.044;.058] [.044;.058] [.045;.058]
.462 .049 .049 .049 .049 .049 .049

Vm

PT:SM
[.447;.478] [.043;.056] [.043;.056] [.043;.056] [.043;.056] [.043;.056] [.043;.056]

.540 .051 .050 .050 .050 .050 .050no PT:SM
[.525;.556] [.045;.058] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.043;.057]
.571 .052 .051 .051 .051 .051 .052

Vp:Vs

PT:SM
[.556;.587] [.046;.060] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059]

.380 .053 .052 .052 .052 .052 .057no PT:SM
[.365;.395] [.046;.060] [.045;.059] [.046;.059] [.046;.059] [.046;.059] [.050;.065]
.424 .050 .050 .050 .050 .050 .052

Vp:Vm

PT:SM
[.408;.439] [.044;.058] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.045;.059]

.278 .056 .055 .055 .055 .055 .084no PT:SM
[.264;.292] [.049;.063] [.048;.062] [.048;.063] [.048;.063] [.048;.063] [.076;.093]
.323 .044 .044 .044 .044 .044 .064

Vs:Vm

PT:SM
[.309;.338] [.038;.051] [.038;.051] [.038;.051] [.038;.051] [.038;.051] [.057;.072]

.177 .058 .056 .057 .057 .057 .148no PT:SM
[.166;.189] [.051;.065] [.049;.063] [.050;.065] [.050;.065] [.050;.065] [.138;.160]
.216 .052 .050 .051 .051 .051 .109

Vp:Vs:Vm

PT:SM
[.203;.229] [.045;.059] [.044;.058] [.045;.058] [.045;.058] [.045;.058] [.100;.119]
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Table E.6: Type I error rate of the model M1 (see Table E.1): The data are simulated using
spherical random effects and 36 stimuli and its represents the subset of model estimated
assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.068 .050 .051 .051 .051 .051 .051no PT:SM
[.061;.077] [.044;.058] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059]
.070 .051 .052 .052 .052 .052 .052

Vp

PT:SM
[.062;.078] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059]

.144 .055 .055 .055 .055 .055 .055no PT:SM
[.134;.156] [.048;.063] [.048;.062] [.048;.062] [.048;.062] [.048;.062] [.048;.062]
.147 .054 .054 .054 .054 .054 .054

Vs

PT:SM
[.137;.159] [.048;.062] [.048;.062] [.048;.062] [.048;.062] [.048;.062] [.048;.062]

.463 .049 .048 .048 .048 .048 .048no PT:SM
[.448;.479] [.043;.056] [.042;.055] [.042;.055] [.042;.055] [.042;.055] [.042;.056]
.472 .049 .049 .049 .049 .049 .049

Vm

PT:SM
[.457;.488] [.043;.056] [.043;.056] [.043;.056] [.043;.056] [.043;.056] [.043;.056]

.497 .052 .051 .051 .051 .051 .051no PT:SM
[.482;.513] [.046;.059] [.045;.058] [.045;.058] [.045;.058] [.045;.058] [.045;.058]
.561 .052 .051 .051 .051 .051 .052

Vp:Vs

PT:SM
[.546;.577] [.046;.060] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059]

.424 .051 .050 .050 .050 .050 .052no PT:SM
[.409;.439] [.044;.058] [.044;.057] [.044;.057] [.044;.057] [.044;.057] [.046;.060]
.433 .050 .050 .050 .050 .050 .051

Vp:Vm

PT:SM
[.418;.449] [.044;.058] [.043;.057] [.043;.057] [.043;.057] [.043;.057] [.045;.058]

.322 .050 .050 .050 .050 .050 .072no PT:SM
[.308;.337] [.043;.057] [.044;.057] [.044;.057] [.044;.057] [.044;.057] [.064;.080]
.337 .044 .044 .044 .044 .044 .064

Vs:Vm

PT:SM
[.323;.352] [.038;.051] [.038;.051] [.038;.051] [.038;.051] [.038;.051] [.056;.072]

.218 .052 .052 .052 .052 .052 .115no PT:SM
[.206;.231] [.046;.059] [.045;.059] [.045;.059] [.045;.059] [.045;.059] [.106;.125]
.227 .051 .050 .050 .050 .050 .107

Vp:Vs:Vm

PT:SM
[.214;.240] [.045;.058] [.043;.057] [.044;.058] [.044;.058] [.044;.058] [.098;.117]
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Table E.7: Type I error rate of the model M1 (see Table E.1): The data are simulated using
correlated random effects and 36 stimuli and its represents the subset of model estimated
without assuming random effects associated to the interaction participants:stimuli.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

.065 .051 .049 .051 .051 .051 .052no PT:SM
[.058;.073] [.044;.058] [.043;.056] [.045;.059] [.045;.059] [.045;.059] [.045;.059]
.065 .051 .051 .051 .051 .051 .052

Vp

PT:SM
[.058;.073] [.045;.058] [.044;.059] [.045;.059] [.045;.059] [.045;.059] [.046;.059]

.136 .054 .052 .054 .054 .054 .054no PT:SM
[.126;.147] [.047;.061] [.045;.059] [.047;.061] [.047;.061] [.047;.061] [.048;.062]
.136 .054 .055 .053 .053 .053 .054

Vs

PT:SM
[.125;.147] [.047;.061] [.048;.063] [.046;.060] [.046;.060] [.046;.060] [.047;.061]

.409 .047 .042 .047 .047 .047 .373no PT:SM
[.394;.425] [.041;.054] [.036;.049] [.041;.054] [.041;.054] [.041;.054] [.358;.388]
.481 .052 .051 .051 .051 .051 .322

Vm

PT:SM
[.466;.496] [.045;.059] [.044;.058] [.045;.059] [.045;.059] [.045;.059] [.308;.337]

.534 .054 .052 .054 .054 .054 .054no PT:SM
[.519;.549] [.048;.062] [.045;.059] [.047;.061] [.047;.061] [.047;.061] [.047;.061]
.551 .052 .050 .051 .051 .051 .052

Vp:Vs

PT:SM
[.536;.566] [.045;.059] [.043;.058] [.044;.058] [.044;.058] [.044;.058] [.045;.059]

.377 .054 .046 .054 .054 .054 .378no PT:SM
[.362;.392] [.048;.062] [.040;.053] [.048;.062] [.048;.062] [.048;.062] [.363;.393]
.427 .057 .051 .056 .056 .056 .366

Vp:Vm

PT:SM
[.412;.442] [.050;.064] [.044;.059] [.050;.064] [.050;.064] [.050;.064] [.351;.381]

.280 .058 .045 .058 .058 .058 .289no PT:SM
[.267;.295] [.051;.065] [.039;.052] [.051;.065] [.051;.065] [.051;.065] [.275;.303]
.330 .055 .050 .055 .055 .055 .264

Vs:Vm

PT:SM
[.315;.344] [.048;.062] [.043;.058] [.048;.062] [.048;.062] [.048;.062] [.251;.279]

.174 .051 .035 .051 .051 .051 .213no PT:SM
[.162;.186] [.045;.058] [.029;.041] [.044;.058] [.044;.058] [.044;.058] [.200;.226]
.230 .053 .045 .054 .054 .054 .286

Vp:Vs:Vm

PT:SM
[.217;.243] [.047;.061] [.038;.052] [.047;.061] [.047;.061] [.047;.061] [.272;.300]
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Table E.8: Type I error rate of the model M1 (see Table E.1): The data are simulated
using correlated random effects and 36 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.065 .051 .049 .052 .052 .052 .052no PT:SM
[.058;.073] [.045;.058] [.043;.057] [.046;.059] [.046;.059] [.046;.059] [.046;.059]
.065 .051 .049 .051 .051 .051 .052

Vp

PT:SM
[.058;.073] [.045;.058] [.043;.057] [.045;.059] [.045;.059] [.045;.059] [.046;.059]

.136 .055 .052 .055 .055 .055 .055no PT:SM
[.126;.147] [.048;.063] [.045;.060] [.048;.062] [.048;.062] [.048;.062] [.048;.062]
.136 .054 .054 .053 .053 .053 .054

Vs

PT:SM
[.125;.147] [.047;.061] [.047;.062] [.047;.061] [.047;.061] [.047;.061] [.047;.061]

.450 .043 .040 .043 .043 .043 .320no PT:SM
[.435;.466] [.037;.050] [.034;.047] [.037;.050] [.037;.050] [.037;.050] [.306;.335]
.491 .051 .049 .051 .051 .051 .312

Vm

PT:SM
[.476;.506] [.045;.059] [.043;.057] [.045;.058] [.045;.058] [.045;.058] [.298;.327]

.499 .056 .052 .055 .055 .055 .054no PT:SM
[.484;.515] [.049;.063] [.045;.059] [.048;.062] [.048;.062] [.048;.062] [.048;.062]
.540 .052 .050 .051 .051 .051 .052

Vp:Vs

PT:SM
[.525;.556] [.045;.059] [.044;.058] [.044;.058] [.044;.058] [.044;.058] [.045;.059]

.418 .052 .047 .051 .051 .051 .358no PT:SM
[.402;.433] [.045;.059] [.041;.055] [.045;.059] [.045;.059] [.045;.059] [.343;.373]
.438 .056 .050 .056 .056 .056 .362

Vp:Vm

PT:SM
[.423;.454] [.050;.064] [.044;.058] [.049;.063] [.049;.063] [.049;.063] [.348;.378]

.331 .052 .045 .052 .052 .052 .258no PT:SM
[.317;.346] [.045;.059] [.038;.052] [.045;.059] [.045;.059] [.045;.059] [.245;.272]
.345 .054 .050 .054 .054 .054 .257

Vs:Vm

PT:SM
[.331;.360] [.047;.061] [.043;.057] [.047;.061] [.047;.061] [.047;.061] [.244;.271]

.214 .048 .038 .048 .048 .048 .228no PT:SM
[.201;.227] [.042;.055] [.032;.045] [.042;.055] [.042;.055] [.042;.055] [.216;.242]
.242 .053 .046 .053 .053 .053 .286

Vp:Vs:Vm

PT:SM
[.229;.255] [.046;.060] [.040;.054] [.047;.061] [.047;.061] [.047;.061] [.272;.300]
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E.1.2 Design M2

Table E.9: Type I error rate of the design M2 (see Table E.1): The data are simulated
using spherical random effects and 18 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.074 .054 .056 .054 .056 .054 .056no PT:SM
[.067;.083] [.047;.061] [.049;.065] [.047;.061] [.050;.064] [.048;.062] [.049;.064]
.075 .056 .055 .053 .056 .056 .056

Vp

PT:SM
[.067;.084] [.049;.063] [.048;.063] [.047;.061] [.049;.063] [.049;.064] [.049;.064]

.086 .052 .051 .052 .054 .052 .053no PT:SM
[.078;.096] [.046;.060] [.044;.059] [.045;.059] [.047;.061] [.046;.060] [.046;.060]
.088 .053 .053 .052 .053 .053 .053

Vs

PT:SM
[.079;.097] [.046;.060] [.046;.061] [.045;.059] [.047;.061] [.046;.060] [.046;.060]

.550 .047 .047 .068 .050 .047 .053no PT:SM
[.535;.566] [.041;.054] [.040;.055] [.060;.076] [.044;.058] [.041;.054] [.046;.060]
.560 .046 .051 .072 .051 .046 .054

Vm

PT:SM
[.545;.576] [.040;.053] [.044;.058] [.064;.080] [.045;.058] [.040;.053] [.048;.062]

.673 .048 .047 .055 .055 .048 .054no PT:SM
[.658;.687] [.042;.055] [.040;.054] [.048;.063] [.048;.063] [.042;.055] [.048;.062]
.777 .049 .056 .046 .060 .048 .060

Vp:Vs

PT:SM
[.764;.790] [.043;.056] [.049;.064] [.040;.053] [.053;.068] [.042;.056] [.053;.068]

.608 .048 .041 .069 .057 .048 .089no PT:SM
[.593;.623] [.042;.056] [.035;.048] [.062;.077] [.050;.064] [.042;.055] [.080;.098]
.623 .048 .041 .064 .056 .048 .079

Vp:Vm

PT:SM
[.608;.638] [.042;.055] [.035;.048] [.057;.072] [.049;.064] [.042;.055] [.071;.087]

.543 .054 .043 .066 .058 .054 .090no PT:SM
[.528;.559] [.047;.061] [.037;.051] [.059;.074] [.051;.065] [.047;.061] [.081;.099]
.560 .052 .041 .071 .056 .052 .084

Vs:Vm

PT:SM
[.545;.576] [.046;.060] [.035;.048] [.064;.080] [.049;.063] [.046;.060] [.076;.093]

.261 .052 .018 .074 .060 .052 .367no PT:SM
[.247;.275] [.046;.060] [.014;.023] [.066;.082] [.053;.067] [.046;.060] [.353;.383]
.271 .049 .024 .070 .063 .049 .365

Vp:Vs:Vm

PT:SM
[.257;.285] [.043;.056] [.019;.029] [.062;.078] [.056;.071] [.043;.056] [.350;.380]
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Table E.10: Estimated type I error rate of the model M2 (see Table E.1): The data are
simulated using correlated random effects and 18 stimuli and its represents the subset of
model estimated without assuming random effects associated to the interaction partici-
pants:stimuli.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

.077 .051 .052 .048 .053 .052 .049no PT:SM
[.069;.085] [.045;.059] [.044;.061] [.042;.055] [.046;.060] [.045;.059] [.043;.056]
.078 .057 .053 .053 .057 .057 .056

Vp

PT:SM
[.070;.087] [.050;.065] [.045;.063] [.047;.061] [.050;.065] [.050;.065] [.049;.064]

.085 .051 .050 .048 .052 .051 .052no PT:SM
[.077;.094] [.044;.058] [.043;.059] [.042;.055] [.046;.060] [.044;.058] [.045;.060]
.086 .049 .042 .048 .048 .049 .049

Vs

PT:SM
[.078;.096] [.043;.056] [.035;.051] [.042;.055] [.042;.055] [.043;.056] [.042;.056]

.443 .056 .042 .072 .060 .056 .056no PT:SM
[.428;.459] [.049;.064] [.035;.050] [.064;.080] [.053;.068] [.049;.064] [.049;.064]
.535 .053 .050 .068 .059 .053 .056

Vm

PT:SM
[.520;.550] [.046;.060] [.042;.060] [.061;.077] [.052;.067] [.046;.060] [.049;.064]

.816 .041 .036 .038 .046 .041 .042no PT:SM
[.804;.828] [.035;.047] [.029;.043] [.033;.045] [.040;.053] [.035;.047] [.036;.049]
.832 .051 .046 .050 .061 .051 .051

Vp:Vs

PT:SM
[.820;.844] [.045;.059] [.038;.055] [.044;.057] [.054;.069] [.045;.058] [.044;.058]

.472 .055 .032 .069 .056 .055 .079no PT:SM
[.457;.487] [.049;.063] [.026;.039] [.062;.078] [.050;.064] [.049;.063] [.071;.088]
.552 .053 .040 .066 .057 .052 .079

Vp:Vm

PT:SM
[.537;.568] [.046;.060] [.033;.049] [.059;.074] [.050;.064] [.046;.060] [.071;.088]

.411 .060 .037 .084 .066 .060 .089no PT:SM
[.396;.426] [.053;.068] [.031;.045] [.076;.093] [.059;.074] [.053;.068] [.080;.098]
.496 .050 .045 .074 .060 .051 .084

Vs:Vm

PT:SM
[.481;.512] [.044;.058] [.037;.054] [.066;.082] [.053;.068] [.045;.058] [.076;.094]

.113 .082 .009 .084 .068 .082 .304no PT:SM
[.104;.123] [.074;.091] [.006;.014] [.076;.093] [.061;.077] [.074;.091] [.289;.319]
.190 .058 .015 .085 .062 .058 .451

Vp:Vs:Vm

PT:SM
[.178;.203] [.052;.066] [.011;.020] [.077;.094] [.054;.069] [.052;.066] [.435;.468]



E.1. Results of simulation: type I error rate 157

Table E.11: Type I error rate of the model M2 (see Table E.1): The data are simulated
using correlated random effects and 18 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.077 .054 .045 .052 .055 .054 .051no PT:SM
[.069;.085] [.047;.061] [.038;.054] [.045;.059] [.048;.062] [.047;.061] [.045;.059]
.078 .058 .053 .053 .057 .057 .056

Vp

PT:SM
[.070;.087] [.051;.065] [.045;.062] [.047;.061] [.050;.065] [.050;.065] [.049;.064]

.085 .054 .051 .051 .055 .054 .053no PT:SM
[.077;.094] [.047;.061] [.043;.060] [.045;.059] [.048;.063] [.047;.061] [.046;.060]
.086 .049 .044 .048 .048 .049 .046

Vs

PT:SM
[.078;.096] [.043;.056] [.036;.052] [.042;.055] [.042;.055] [.043;.056] [.040;.054]

.537 .051 .048 .066 .054 .051 .053no PT:SM
[.522;.553] [.045;.059] [.040;.057] [.059;.075] [.048;.062] [.045;.058] [.046;.060]
.580 .053 .054 .068 .059 .052 .055

Vm

PT:SM
[.565;.596] [.046;.060] [.046;.064] [.061;.077] [.052;.067] [.046;.060] [.048;.063]

.671 .046 .033 .051 .054 .046 .042no PT:SM
[.657;.686] [.040;.053] [.027;.041] [.045;.058] [.047;.061] [.040;.053] [.036;.050]
.762 .052 .049 .051 .061 .052 .050

Vp:Vs

PT:SM
[.749;.776] [.045;.059] [.041;.058] [.045;.058] [.054;.069] [.045;.059] [.043;.058]

.596 .046 .036 .066 .051 .046 .075no PT:SM
[.581;.612] [.040;.053] [.030;.044] [.059;.075] [.045;.059] [.040;.053] [.067;.084]
.607 .053 .044 .065 .056 .052 .079

Vp:Vm

PT:SM
[.592;.622] [.046;.060] [.036;.052] [.058;.073] [.050;.064] [.046;.060] [.070;.088]

.543 .052 .041 .078 .059 .052 .089no PT:SM
[.528;.559] [.045;.059] [.034;.049] [.070;.086] [.052;.067] [.046;.059] [.081;.099]
.568 .050 .045 .073 .060 .050 .086

Vs:Vm

PT:SM
[.553;.584] [.044;.057] [.037;.053] [.065;.081] [.053;.068] [.044;.058] [.077;.095]

.257 .054 .013 .080 .057 .054 .402no PT:SM
[.244;.271] [.047;.061] [.009;.018] [.072;.089] [.050;.064] [.048;.062] [.386;.418]
.272 .057 .015 .083 .061 .057 .452

Vp:Vs:Vm

PT:SM
[.258;.286] [.050;.065] [.011;.020] [.075;.092] [.054;.069] [.050;.065] [.436;.468]
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Table E.12: Type I error rate of the model M2 (see Table E.1): The data are simulated
using spherical random effects and 36 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

.062 .054 .054 .051 .054 .054 .055no PT:SM
[.055;.070] [.047;.061] [.047;.063] [.044;.058] [.048;.062] [.047;.061] [.048;.062]
.062 .054 .054 .052 .054 .054 .054

Vp

PT:SM
[.055;.070] [.047;.061] [.047;.062] [.046;.059] [.048;.062] [.048;.062] [.047;.061]

.136 .051 .051 .049 .052 .050 .052no PT:SM
[.126;.148] [.044;.058] [.044;.059] [.043;.056] [.045;.059] [.044;.058] [.045;.059]
.139 .054 .059 .053 .058 .054 .058

Vs

PT:SM
[.129;.150] [.047;.061] [.052;.068] [.046;.060] [.051;.065] [.047;.061] [.051;.066]

.584 .054 .053 .069 .056 .053 .056no PT:SM
[.569;.599] [.047;.061] [.046;.061] [.062;.077] [.049;.063] [.047;.061] [.049;.064]
.633 .051 .053 .066 .056 .051 .057

Vm

PT:SM
[.618;.648] [.045;.058] [.046;.061] [.059;.075] [.050;.064] [.044;.058] [.050;.065]

.906 .041 .044 .043 .046 .041 .046no PT:SM
[.896;.915] [.036;.048] [.038;.051] [.037;.049] [.040;.053] [.036;.048] [.040;.053]
.926 .046 .052 .046 .052 .046 .053

Vp:Vs

PT:SM
[.918;.934] [.040;.053] [.045;.060] [.040;.053] [.045;.059] [.040;.053] [.046;.061]

.723 .059 .065 .077 .069 .058 .077no PT:SM
[.709;.737] [.052;.066] [.057;.074] [.069;.086] [.061;.077] [.051;.066] [.069;.085]
.782 .054 .059 .072 .064 .054 .066

Vp:Vm

PT:SM
[.769;.795] [.048;.062] [.052;.068] [.064;.081] [.057;.072] [.048;.062] [.059;.074]

.478 .061 .056 .092 .069 .061 .122no PT:SM
[.463;.493] [.054;.069] [.049;.065] [.083;.101] [.062;.077] [.054;.069] [.112;.133]
.565 .051 .054 .081 .057 .051 .081

Vs:Vm

PT:SM
[.550;.581] [.045;.059] [.047;.062] [.073;.089] [.050;.065] [.045;.059] [.073;.090]

.250 .075 .036 .103 .087 .075 .409no PT:SM
[.237;.264] [.067;.083] [.030;.043] [.094;.112] [.079;.096] [.067;.083] [.394;.425]
.360 .049 .039 .085 .060 .049 .195

Vp:Vs:Vm

PT:SM
[.345;.375] [.043;.056] [.033;.046] [.077;.094] [.053;.068] [.043;.056] [.183;.208]
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Table E.13: Type I error rate of the model M2 (see Table E.1): The data are simulated
using spherical random effects and 36 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.062 .054 .051 .053 .055 .054 .055no PT:SM
[.055;.070] [.048;.062] [.044;.059] [.046;.060] [.049;.063] [.048;.062] [.048;.062]
.062 .054 .055 .053 .054 .055 .053

Vp

PT:SM
[.055;.070] [.048;.062] [.048;.063] [.046;.060] [.048;.062] [.048;.062] [.047;.061]

.136 .053 .053 .053 .054 .053 .055no PT:SM
[.126;.148] [.047;.061] [.046;.061] [.046;.060] [.048;.062] [.047;.061] [.048;.062]
.139 .054 .059 .053 .058 .054 .058

Vs

PT:SM
[.129;.150] [.047;.061] [.051;.067] [.047;.060] [.051;.065] [.047;.061] [.051;.066]

.660 .051 .052 .066 .051 .050 .052no PT:SM
[.645;.674] [.044;.058] [.045;.061] [.058;.074] [.044;.058] [.044;.058] [.045;.059]
.666 .051 .053 .066 .056 .050 .057

Vm

PT:SM
[.652;.681] [.044;.058] [.046;.061] [.059;.074] [.049;.064] [.044;.057] [.050;.065]

.817 .047 .046 .052 .051 .047 .052no PT:SM
[.805;.829] [.041;.054] [.040;.054] [.046;.060] [.045;.058] [.041;.054] [.045;.059]
.885 .047 .053 .047 .052 .047 .053

Vp:Vs

PT:SM
[.875;.895] [.041;.054] [.046;.061] [.040;.054] [.046;.059] [.041;.054] [.046;.061]

.809 .055 .064 .075 .063 .054 .068no PT:SM
[.797;.821] [.048;.062] [.056;.073] [.067;.083] [.056;.071] [.048;.062] [.060;.076]
.824 .054 .059 .072 .064 .054 .067

Vp:Vm

PT:SM
[.812;.836] [.048;.062] [.052;.068] [.064;.080] [.057;.072] [.048;.062] [.060;.076]

.606 .051 .053 .081 .058 .051 .086no PT:SM
[.591;.621] [.045;.059] [.045;.061] [.073;.090] [.051;.065] [.045;.059] [.077;.095]
.622 .051 .051 .081 .057 .051 .080

Vs:Vm

PT:SM
[.607;.637] [.045;.058] [.045;.059] [.073;.089] [.050;.065] [.045;.058] [.072;.089]

.446 .051 .040 .092 .070 .051 .249no PT:SM
[.431;.462] [.045;.059] [.034;.047] [.083;.101] [.063;.079] [.045;.059] [.235;.263]
.463 .049 .040 .085 .059 .049 .189

Vp:Vs:Vm

PT:SM
[.448;.479] [.042;.056] [.034;.047] [.076;.094] [.052;.067] [.042;.056] [.177;.202]
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Table E.14: Type I error rate of the model M2 (see Table E.1): The data are simulated
using correlated random effects and 36 stimuli and its represents the subset of model esti-
mated without assuming random effects associated to the interaction participants:stimuli.

RI RI-L MAX ZCP-sum ZCP-poly gANOVA CS-PCA

.058 .048 .050 .047 .048 .048 .049no PT:SM
[.051;.065] [.042;.055] [.043;.059] [.041;.054] [.042;.055] [.042;.055] [.043;.057]
.059 .047 .050 .047 .047 .047 .050

Vp

PT:SM
[.052;.067] [.041;.054] [.042;.060] [.041;.054] [.041;.054] [.041;.054] [.043;.058]

.134 .050 .056 .046 .050 .050 .050no PT:SM
[.124;.145] [.044;.058] [.048;.065] [.040;.053] [.043;.057] [.044;.058] [.043;.057]
.140 .050 .055 .044 .053 .050 .056

Vs

PT:SM
[.129;.151] [.044;.058] [.047;.065] [.039;.051] [.046;.060] [.044;.058] [.049;.065]

.564 .050 .045 .060 .052 .050 .050no PT:SM
[.549;.580] [.044;.057] [.038;.054] [.053;.068] [.046;.060] [.044;.057] [.044;.058]
.635 .048 .050 .066 .053 .048 .053

Vm

PT:SM
[.621;.650] [.041;.055] [.042;.060] [.058;.074] [.046;.060] [.041;.055] [.046;.061]

.908 .044 .048 .046 .049 .044 .045no PT:SM
[.899;.917] [.039;.051] [.041;.057] [.040;.053] [.043;.056] [.039;.051] [.039;.053]
.923 .051 .052 .052 .056 .051 .053

Vp:Vs

PT:SM
[.915;.932] [.044;.058] [.044;.062] [.046;.060] [.050;.064] [.044;.058] [.046;.061]

.698 .059 .055 .075 .067 .059 .077no PT:SM
[.684;.712] [.052;.067] [.047;.064] [.068;.084] [.060;.075] [.052;.067] [.068;.086]
.770 .054 .058 .070 .064 .054 .073

Vp:Vm

PT:SM
[.757;.783] [.048;.062] [.049;.068] [.062;.078] [.057;.072] [.048;.062] [.065;.083]

.478 .053 .037 .094 .063 .053 .118no PT:SM
[.463;.494] [.046;.060] [.030;.044] [.086;.104] [.056;.071] [.046;.060] [.108;.128]
.540 .045 .034 .080 .051 .045 .117

Vs:Vm

PT:SM
[.525;.556] [.039;.052] [.028;.043] [.072;.089] [.044;.058] [.039;.052] [.107;.129]

.245 .083 .026 .113 .086 .083 .457no PT:SM
[.232;.259] [.075;.092] [.020;.032] [.104;.124] [.078;.096] [.075;.092] [.441;.473]
.351 .058 .028 .106 .068 .058 .502

Vp:Vs:Vm

PT:SM
[.337;.366] [.051;.065] [.022;.036] [.097;.116] [.061;.077] [.051;.065] [.485;.519]
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Table E.15: Type I error rate of the model M2 (see Table E.1): The data are simulated
using correlated random effects and 36 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ MAX+ ZCP-sum+ ZCP-poly+ gANOVA+ CS-PCA+

.058 .049 .048 .048 .049 .048 .050no PT:SM
[.051;.065] [.043;.056] [.040;.057] [.042;.056] [.043;.056] [.042;.056] [.043;.057]
.059 .047 .049 .047 .047 .047 .048

Vp

PT:SM
[.052;.067] [.041;.054] [.041;.058] [.041;.054] [.041;.054] [.041;.054] [.042;.056]

.134 .052 .050 .048 .052 .052 .052no PT:SM
[.124;.145] [.046;.060] [.042;.060] [.042;.055] [.046;.060] [.046;.060] [.045;.060]
.140 .051 .051 .045 .053 .050 .057

Vs

PT:SM
[.129;.151] [.044;.058] [.043;.060] [.039;.052] [.046;.060] [.044;.058] [.050;.066]

.642 .046 .040 .055 .050 .046 .048no PT:SM
[.627;.657] [.040;.053] [.033;.049] [.048;.063] [.043;.057] [.040;.053] [.041;.056]
.672 .047 .052 .066 .053 .047 .054

Vm

PT:SM
[.658;.687] [.041;.054] [.044;.061] [.058;.074] [.046;.060] [.041;.054] [.047;.062]

.813 .049 .046 .053 .055 .049 .044no PT:SM
[.801;.825] [.043;.056] [.038;.056] [.046;.060] [.048;.062] [.043;.056] [.038;.052]
.881 .051 .050 .052 .057 .051 .050

Vp:Vs

PT:SM
[.871;.891] [.045;.058] [.042;.059] [.046;.060] [.050;.064] [.045;.058] [.044;.058]

.794 .053 .053 .072 .063 .053 .075no PT:SM
[.781;.806] [.047;.061] [.044;.062] [.064;.080] [.056;.071] [.047;.061] [.067;.084]
.809 .054 .058 .069 .064 .054 .073

Vp:Vm

PT:SM
[.797;.821] [.047;.061] [.049;.067] [.062;.078] [.056;.072] [.047;.061] [.065;.083]

.610 .042 .036 .082 .050 .042 .113no PT:SM
[.595;.625] [.036;.049] [.029;.044] [.073;.090] [.044;.058] [.036;.049] [.103;.124]
.609 .045 .035 .080 .051 .045 .116

Vs:Vm

PT:SM
[.594;.625] [.039;.052] [.029;.043] [.072;.089] [.044;.058] [.039;.052] [.106;.127]

.420 .060 .028 .103 .069 .060 .494no PT:SM
[.405;.436] [.053;.068] [.022;.035] [.094;.113] [.062;.077] [.053;.068] [.478;.511]
.448 .057 .027 .106 .067 .056 .493

Vp:Vs:Vm

PT:SM
[.433;.463] [.050;.064] [.022;.034] [.097;.116] [.059;.075] [.050;.064] [.477;.510]
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E.1.3 Design M4

Model M4: Type I error rate per simulation setting
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Figure E.1: Type I error rate of the model M4 for all simulations setting (1 sample
sizes × 2 correlations of random effects × 2 interactions in simulation × 2 interactions in
estimation × 15 effects = 120 settings ). The spherical correlation structures (RI-L and
gANOVA) produce results closer to the nominal level.
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Figure E.2: Type I error rate of the model M4 split given the simulations settings. The
vertical lines indicate the range of all simulations within the condition. No simulation
setting tend to have an effect on the type I error rate. The variable VM and its interaction
have also a higher deviation from the nominal level.
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Table E.16: Type I error rate of the model M4 (see Table E.1): The data are simulated
using spherical random effects and 18 stimuli and its represents the subset of model esti-
mated without assuming random effects associated to the interaction participants:stimuli.

RI RI-L ZCP-sum ZCP-poly gANOVA

no PT:SM .078 [.070;.087] .050 [.043;.057] .052 [.046;.060] .054 [.047;.061] .055 [.048;.062]Vp
PT:SM .080 [.072;.089] .053 [.046;.060] .052 [.046;.060] .055 [.049;.063] .056 [.050;.064]

no PT:SM .091 [.082;.100] .046 [.040;.053] .043 [.037;.050] .049 [.043;.056] .048 [.042;.055]Vs
PT:SM .094 [.086;.104] .044 [.038;.050] .043 [.037;.050] .048 [.042;.056] .047 [.041;.054]

no PT:SM .507 [.492;.523] .052 [.045;.059] .067 [.060;.075] .056 [.050;.064] .051 [.044;.058]Vm
PT:SM .540 [.525;.555] .049 [.043;.056] .067 [.060;.075] .053 [.046;.060] .047 [.041;.054]

no PT:SM .417 [.402;.433] .051 [.044;.058] .049 [.043;.056] .048 [.042;.055] .048 [.042;.055]Vps
PT:SM .422 [.407;.438] .051 [.045;.058] .046 [.040;.053] .047 [.041;.054] .048 [.042;.055]

no PT:SM .789 [.776;.802] .039 [.033;.045] .046 [.040;.053] .046 [.039;.052] .038 [.032;.044]Vp:Vs
PT:SM .820 [.808;.832] .053 [.046;.060] .056 [.049;.063] .059 [.052;.067] .051 [.044;.058]

no PT:SM .545 [.530;.561] .060 [.053;.068] .083 [.075;.092] .070 [.062;.078] .059 [.052;.067]Vp:Vm
PT:SM .582 [.566;.597] .053 [.046;.060] .078 [.070;.087] .064 [.057;.072] .052 [.046;.059]

no PT:SM .502 [.487;.518] .038 [.032;.044] .039 [.033;.045] .040 [.034;.047] .038 [.032;.044]Vp:Vps
PT:SM .519 [.504;.535] .055 [.048;.062] .053 [.046;.060] .054 [.047;.061] .053 [.046;.060]

no PT:SM .498 [.482;.513] .059 [.052;.067] .083 [.075;.092] .068 [.061;.077] .058 [.051;.066]Vs:Vm
PT:SM .545 [.530;.560] .056 [.049;.063] .080 [.072;.089] .064 [.056;.072] .056 [.049;.063]

no PT:SM .456 [.441;.471] .042 [.036;.048] .044 [.038;.051] .042 [.037;.049] .042 [.036;.048]Vs:Vps
PT:SM .476 [.461;.492] .054 [.047;.061] .052 [.046;.060] .054 [.047;.061] .052 [.045;.059]

no PT:SM .162 [.151;.174] .060 [.053;.068] .072 [.064;.080] .067 [.060;.075] .062 [.054;.069]Vm:Vps
PT:SM .190 [.178;.203] .048 [.042;.055] .074 [.066;.082] .060 [.053;.068] .050 [.044;.057]

no PT:SM .190 [.179;.203] .067 [.059;.075] .102 [.093;.112] .084 [.076;.093] .068 [.060;.076]Vp:Vs:Vm
PT:SM .264 [.251;.279] .051 [.045;.058] .088 [.080;.097] .068 [.060;.076] .052 [.045;.059]

no PT:SM .378 [.364;.394] .031 [.026;.037] .041 [.035;.047] .034 [.029;.041] .031 [.026;.037]Vp:Vs:Vps
PT:SM .385 [.370;.401] .054 [.047;.061] .065 [.058;.073] .064 [.057;.073] .054 [.048;.062]

no PT:SM .104 [.095;.114] .050 [.043;.057] .062 [.055;.070] .050 [.044;.058] .049 [.043;.056]Vp:Vm:Vps
PT:SM .156 [.145;.167] .049 [.043;.056] .063 [.056;.071] .053 [.046;.060] .047 [.041;.054]

no PT:SM .104 [.095;.114] .055 [.048;.062] .057 [.050;.064] .052 [.046;.060] .053 [.047;.061]Vs:Vm:Vps
PT:SM .148 [.137;.159] .049 [.043;.056] .062 [.054;.069] .049 [.043;.056] .049 [.043;.056]

no PT:SM .038 [.032;.044] .068 [.060;.076] .052 [.046;.060] .046 [.040;.054] .064 [.057;.072]Vp:Vs:Vm:Vps
PT:SM .055 [.048;.063] .047 [.041;.054] .045 [.039;.052] .040 [.035;.047] .045 [.039;.052]
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Table E.17: Type I error rate of the model M4 (see Table E.1): The data are simu-
lated using sphercial random effect and 18 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ ZCP-sum+ ZCP-poly+ gANOVA+

no PT:SM .079 [.071;.088] .052 [.045;.059] .054 [.048;.062] .056 [.049;.064] .056 [.049;.063]Vp
PT:SM .081 [.073;.090] .053 [.046;.060] .053 [.046;.060] .056 [.049;.063] .057 [.050;.064]

no PT:SM .091 [.083;.100] .048 [.042;.055] .047 [.041;.054] .053 [.046;.060] .050 [.044;.058]Vs
PT:SM .094 [.086;.104] .044 [.039;.051] .044 [.038;.050] .050 [.043;.057] .047 [.041;.054]

no PT:SM .594 [.578;.609] .049 [.043;.056] .064 [.057;.072] .056 [.049;.063] .048 [.042;.055]Vm
PT:SM .601 [.586;.617] .048 [.042;.056] .066 [.059;.075] .053 [.046;.060] .046 [.040;.054]

no PT:SM .311 [.297;.326] .055 [.049;.063] .056 [.049;.063] .054 [.048;.062] .053 [.047;.061]Vps
PT:SM .350 [.336;.366] .051 [.044;.058] .046 [.040;.053] .047 [.041;.054] .048 [.041;.055]

no PT:SM .624 [.609;.639] .047 [.041;.054] .056 [.049;.063] .052 [.046;.060] .046 [.039;.052]Vp:Vs
PT:SM .702 [.688;.717] .053 [.046;.060] .056 [.049;.063] .060 [.053;.068] .052 [.045;.059]

no PT:SM .678 [.664;.693] .056 [.049;.063] .078 [.070;.086] .065 [.058;.073] .055 [.048;.062]Vp:Vm
PT:SM .663 [.648;.678] .052 [.046;.060] .078 [.070;.087] .063 [.056;.071] .052 [.045;.059]

no PT:SM .350 [.336;.365] .046 [.040;.053] .047 [.041;.054] .047 [.041;.054] .044 [.039;.051]Vp:Vps
PT:SM .402 [.387;.417] .055 [.048;.062] .052 [.046;.060] .056 [.049;.063] .054 [.047;.061]

no PT:SM .641 [.626;.656] .053 [.046;.060] .078 [.070;.087] .062 [.055;.070] .053 [.046;.060]Vs:Vm
PT:SM .638 [.623;.653] .054 [.048;.062] .080 [.072;.088] .063 [.056;.071] .054 [.048;.062]

no PT:SM .292 [.278;.306] .050 [.043;.057] .052 [.046;.060] .049 [.043;.056] .050 [.043;.057]Vs:Vps
PT:SM .348 [.334;.363] .054 [.048;.062] .054 [.047;.061] .054 [.047;.061] .052 [.046;.060]

no PT:SM .264 [.250;.278] .054 [.047;.061] .069 [.061;.077] .060 [.053;.067] .054 [.047;.061]Vm:Vps
PT:SM .248 [.234;.261] .048 [.042;.055] .073 [.065;.082] .059 [.052;.067] .049 [.043;.056]

no PT:SM .390 [.375;.406] .052 [.046;.060] .092 [.084;.102] .074 [.066;.082] .054 [.047;.061]Vp:Vs:Vm
PT:SM .411 [.396;.426] .050 [.043;.057] .088 [.079;.097] .067 [.059;.075] .050 [.043;.057]

no PT:SM .168 [.157;.181] .046 [.040;.053] .051 [.045;.058] .048 [.042;.055] .049 [.043;.056]Vp:Vs:Vps
PT:SM .216 [.203;.229] .056 [.050;.064] .067 [.060;.075] .067 [.060;.075] .056 [.049;.064]

no PT:SM .216 [.204;.230] .042 [.037;.049] .059 [.052;.067] .047 [.041;.054] .042 [.036;.048]Vp:Vm:Vps
PT:SM .245 [.232;.259] .048 [.042;.055] .062 [.055;.070] .051 [.044;.058] .045 [.039;.052]

no PT:SM .220 [.208;.233] .042 [.036;.049] .054 [.047;.061] .048 [.042;.055] .041 [.036;.048]Vs:Vm:Vps
PT:SM .232 [.219;.245] .048 [.041;.055] .061 [.054;.069] .048 [.042;.055] .048 [.041;.055]

no PT:SM .133 [.123;.144] .051 [.045;.059] .054 [.047;.061] .043 [.037;.050] .049 [.043;.056]Vp:Vs:Vm:Vps
PT:SM .124 [.114;.134] .046 [.039;.052] .045 [.039;.052] .040 [.034;.046] .043 [.037;.050]
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Table E.18: Type I error rate of the model M4 (see Table E.1): The data are simulated
using correlated random effects and 18 stimuli and its represents the subset of model esti-
mated without assuming random effects associated to the interaction participants:stimuli.

RI RI-L ZCP-sum ZCP-poly gANOVA

no PT:SM .077 [.069;.086] .044 [.039;.051] .047 [.040;.054] .047 [.041;.054] .047 [.041;.054]Vp
PT:SM .080 [.072;.089] .050 [.044;.058] .051 [.044;.058] .053 [.047;.061] .052 [.046;.060]

no PT:SM .102 [.094;.112] .051 [.045;.059] .053 [.046;.060] .053 [.047;.061] .054 [.048;.062]Vs
PT:SM .096 [.088;.106] .050 [.044;.058] .048 [.042;.056] .055 [.048;.063] .052 [.046;.060]

no PT:SM .504 [.489;.520] .050 [.044;.058] .062 [.055;.070] .058 [.051;.066] .050 [.043;.057]Vm
PT:SM .532 [.517;.548] .057 [.050;.065] .070 [.062;.078] .062 [.055;.070] .057 [.050;.065]

no PT:SM .410 [.395;.426] .045 [.039;.052] .046 [.040;.053] .044 [.038;.051] .044 [.038;.051]Vps
PT:SM .420 [.405;.435] .042 [.036;.049] .044 [.039;.051] .042 [.037;.049] .041 [.035;.048]

no PT:SM .796 [.783;.808] .046 [.040;.054] .049 [.042;.056] .050 [.043;.057] .045 [.039;.052]Vp:Vs
PT:SM .816 [.804;.828] .051 [.045;.059] .045 [.039;.052] .053 [.046;.060] .050 [.043;.057]

no PT:SM .536 [.521;.552] .056 [.050;.064] .075 [.068;.084] .064 [.056;.072] .056 [.050;.064]Vp:Vm
PT:SM .602 [.587;.617] .048 [.042;.055] .072 [.064;.080] .058 [.051;.066] .048 [.042;.055]

no PT:SM .479 [.464;.494] .043 [.037;.050] .044 [.038;.051] .041 [.035;.048] .040 [.034;.046]Vp:Vps
PT:SM .508 [.493;.524] .050 [.044;.057] .048 [.041;.055] .052 [.045;.059] .050 [.044;.057]

no PT:SM .473 [.458;.489] .065 [.058;.073] .086 [.078;.095] .070 [.062;.078] .063 [.056;.071]Vs:Vm
PT:SM .550 [.535;.565] .056 [.050;.064] .082 [.074;.091] .066 [.058;.074] .056 [.049;.063]

no PT:SM .459 [.444;.475] .048 [.042;.055] .044 [.038;.051] .046 [.040;.053] .046 [.040;.053]Vs:Vps
PT:SM .472 [.457;.488] .055 [.048;.063] .056 [.049;.063] .055 [.048;.063] .056 [.049;.063]

no PT:SM .146 [.135;.157] .058 [.052;.066] .075 [.068;.084] .064 [.057;.072] .059 [.052;.067]Vm:Vps
PT:SM .188 [.177;.201] .049 [.043;.056] .068 [.060;.076] .057 [.050;.065] .050 [.043;.057]

no PT:SM .200 [.187;.212] .067 [.060;.075] .123 [.113;.133] .086 [.078;.096] .069 [.062;.077]Vp:Vs:Vm
PT:SM .265 [.252;.279] .055 [.048;.063] .106 [.097;.116] .074 [.066;.083] .056 [.049;.063]

no PT:SM .384 [.370;.400] .031 [.026;.037] .040 [.034;.047] .040 [.034;.046] .030 [.025;.035]Vp:Vs:Vps
PT:SM .362 [.347;.377] .038 [.033;.044] .054 [.048;.062] .048 [.042;.055] .038 [.033;.044]

no PT:SM .114 [.104;.124] .052 [.045;.059] .073 [.065;.081] .054 [.048;.062] .052 [.046;.060]Vp:Vm:Vps
PT:SM .147 [.137;.159] .046 [.040;.054] .070 [.062;.078] .051 [.045;.058] .047 [.041;.054]

no PT:SM .104 [.094;.113] .059 [.052;.067] .073 [.065;.082] .056 [.049;.064] .059 [.052;.067]Vs:Vm:Vps
PT:SM .150 [.140;.162] .057 [.050;.065] .079 [.071;.088] .060 [.053;.068] .057 [.050;.065]

no PT:SM .036 [.031;.043] .069 [.061;.077] .066 [.058;.074] .048 [.042;.055] .066 [.059;.075]Vp:Vs:Vm:Vps
PT:SM .067 [.059;.075] .052 [.046;.060] .078 [.070;.087] .043 [.037;.050] .050 [.044;.058]
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Table E.19: Type I error rate of the model M4 (see Table E.1): The data are simulated
using correlated random effects and 18 stimuli and its represents the subset of model
estimated assuming random effects associated to the interaction participants:stimuli.

RI+ RI-L+ ZCP-sum+ ZCP-poly+ gANOVA+

no PT:SM .077 [.069;.085] .046 [.039;.052] .047 [.041;.054] .050 [.043;.057] .050 [.044;.058]Vp
PT:SM .080 [.072;.089] .051 [.045;.058] .051 [.045;.058] .054 [.047;.061] .052 [.046;.060]

no PT:SM .102 [.093;.112] .054 [.047;.061] .057 [.050;.065] .059 [.052;.067] .057 [.050;.065]Vs
PT:SM .097 [.088;.107] .051 [.044;.058] .049 [.043;.056] .055 [.049;.063] .053 [.047;.061]

no PT:SM .595 [.580;.611] .048 [.042;.055] .058 [.051;.066] .054 [.047;.061] .046 [.040;.053]Vm
PT:SM .593 [.578;.608] .057 [.050;.064] .070 [.062;.078] .062 [.055;.070] .057 [.050;.064]

no PT:SM .305 [.291;.319] .049 [.043;.056] .050 [.044;.057] .048 [.042;.055] .048 [.042;.055]Vps
PT:SM .346 [.331;.361] .042 [.037;.049] .045 [.039;.052] .043 [.037;.050] .041 [.036;.048]

no PT:SM .623 [.608;.638] .051 [.044;.058] .055 [.049;.063] .058 [.051;.066] .050 [.043;.057]Vp:Vs
PT:SM .698 [.684;.713] .052 [.046;.059] .045 [.039;.052] .053 [.047;.061] .050 [.044;.057]

no PT:SM .670 [.656;.685] .052 [.046;.059] .072 [.064;.080] .060 [.053;.068] .052 [.045;.059]Vp:Vm
PT:SM .686 [.671;.700] .048 [.042;.055] .072 [.064;.080] .058 [.051;.065] .047 [.041;.054]

no PT:SM .318 [.304;.333] .048 [.042;.055] .046 [.040;.053] .046 [.039;.052] .044 [.038;.051]Vp:Vps
PT:SM .390 [.375;.405] .050 [.044;.058] .048 [.042;.055] .052 [.046;.060] .051 [.044;.058]

no PT:SM .626 [.611;.641] .056 [.050;.064] .081 [.073;.090] .064 [.057;.072] .056 [.050;.064]Vs:Vm
PT:SM .636 [.622;.652] .055 [.048;.063] .081 [.073;.090] .065 [.058;.073] .054 [.048;.062]

no PT:SM .303 [.289;.318] .056 [.049;.063] .056 [.050;.064] .054 [.048;.062] .055 [.048;.062]Vs:Vps
PT:SM .361 [.346;.376] .056 [.049;.063] .057 [.050;.065] .056 [.049;.063] .056 [.049;.064]

no PT:SM .238 [.225;.252] .052 [.045;.059] .072 [.064;.080] .055 [.048;.062] .052 [.046;.059]Vm:Vps
PT:SM .260 [.247;.274] .049 [.043;.056] .066 [.059;.074] .056 [.050;.064] .050 [.043;.057]

no PT:SM .396 [.381;.411] .056 [.049;.063] .114 [.104;.124] .074 [.066;.082] .056 [.050;.064]Vp:Vs:Vm
PT:SM .409 [.394;.424] .054 [.047;.061] .105 [.096;.115] .074 [.066;.082] .054 [.047;.061]

no PT:SM .181 [.169;.193] .046 [.040;.054] .053 [.046;.060] .059 [.052;.067] .049 [.043;.056]Vp:Vs:Vps
PT:SM .200 [.188;.213] .039 [.034;.046] .055 [.048;.063] .050 [.043;.057] .040 [.035;.047]

no PT:SM .238 [.225;.252] .044 [.038;.051] .072 [.064;.080] .049 [.043;.056] .044 [.039;.051]Vp:Vm:Vps
PT:SM .236 [.224;.250] .046 [.040;.053] .068 [.061;.077] .051 [.044;.058] .046 [.040;.054]

no PT:SM .219 [.207;.232] .050 [.043;.057] .071 [.063;.079] .054 [.047;.061] .050 [.043;.057]Vs:Vm:Vps
PT:SM .232 [.220;.246] .056 [.049;.064] .079 [.071;.088] .059 [.052;.067] .055 [.048;.062]

no PT:SM .134 [.124;.145] .056 [.049;.063] .077 [.069;.085] .045 [.039;.052] .052 [.046;.059]Vp:Vs:Vm:Vps
PT:SM .152 [.142;.164] .052 [.045;.059] .078 [.071;.087] .042 [.036;.048] .049 [.043;.056]
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E.2 Results of Simulation: Power Analysis

Table E.20: Power analysis of model M2 (see Table E.1): The data are simulated using
spherical random effects, without the interaction participants:stimuli. The models are esti-
mated without assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .074 [.067;.083] .146 [.136;.158] .383 [.368;.399] .713 [.699;.727] .922 [.913;.930] .989 [.986;.992]
RI-L .052 [.046;.059] .112 [.103;.122] .318 [.304;.333] .658 [.643;.672] .897 [.888;.906] .984 [.980;.987]
ZCP-sum .052 [.045;.059] .099 [.090;.109] .280 [.266;.294] .607 [.592;.622] .872 [.862;.883] .977 [.973;.982]
ZCP-poly .054 [.047;.061] .112 [.103;.122] .318 [.303;.332] .659 [.644;.674] .897 [.888;.907] .983 [.980;.987]

Vp

gANOVA .052 [.046;.060] .112 [.102;.122] .318 [.304;.333] .658 [.643;.672] .897 [.888;.906] .984 [.980;.987]

RI .086 [.078;.096] .183 [.172;.196] .468 [.453;.484] .784 [.771;.797] .951 [.945;.958] .996 [.994;.998]
RI-L .051 [.045;.059] .122 [.113;.133] .377 [.363;.393] .712 [.699;.727] .928 [.920;.936] .992 [.990;.995]
ZCP-sum .047 [.041;.054] .104 [.095;.114] .324 [.310;.339] .655 [.640;.670] .903 [.894;.912] .988 [.984;.991]
ZCP-poly .052 [.045;.059] .124 [.114;.135] .377 [.362;.392] .710 [.696;.724] .928 [.920;.936] .992 [.990;.995]

Vs

gANOVA .051 [.045;.059] .122 [.113;.133] .377 [.363;.393] .712 [.698;.726] .928 [.920;.936] .992 [.990;.995]

RI .463 [.448;.479] .632 [.617;.647] .891 [.881;.901] .986 [.983;.990] 1 [.999;1] 1 [1;1]
RI-L .051 [.045;.059] .146 [.135;.157] .451 [.436;.467] .812 [.800;.824] .971 [.966;.976] .998 [.997;1]
ZCP-sum .075 [.067;.083] .130 [.119;.140] .328 [.313;.342] .651 [.636;.666] .903 [.894;.912] .984 [.980;.987]
ZCP-poly .056 [.049;.063] .154 [.143;.166] .459 [.443;.474] .809 [.797;.821] .966 [.961;.972] .998 [.996;.999]

Vm

gANOVA .051 [.045;.059] .146 [.135;.157] .450 [.435;.466] .812 [.799;.824] .971 [.966;.976] .998 [.997;1]

RI .814 [.803;.827] .863 [.852;.874] .942 [.935;.949] .984 [.980;.988] .998 [.997;.999] 1 [.999;1]
RI-L .042 [.036;.048] .073 [.065;.081] .194 [.182;.207] .428 [.413;.444] .704 [.690;.718] .908 [.899;.917]
ZCP-sum .046 [.040;.053] .056 [.049;.063] .101 [.092;.111] .212 [.200;.225] .413 [.398;.428] .658 [.643;.672]
ZCP-poly .046 [.040;.053] .080 [.072;.088] .197 [.185;.209] .433 [.418;.448] .701 [.687;.715] .898 [.889;.908]

Vp:Vs

gANOVA .042 [.036;.048] .073 [.065;.081] .194 [.182;.207] .427 [.412;.443] .702 [.688;.716] .906 [.898;.916]

RI .467 [.452;.482] .582 [.566;.597] .788 [.775;.800] .936 [.929;.944] .994 [.991;.996] 1 [1;1]
RI-L .056 [.049;.063] .100 [.091;.110] .266 [.252;.280] .545 [.530;.560] .814 [.802;.826] .954 [.947;.960]
ZCP-sum .076 [.068;.084] .095 [.087;.105] .186 [.174;.198] .367 [.352;.382] .612 [.597;.627] .820 [.808;.832]
ZCP-poly .066 [.058;.074] .104 [.095;.114] .269 [.255;.283] .537 [.522;.553] .804 [.792;.816] .948 [.942;.955]

Vp:Vm

gANOVA .056 [.049;.063] .100 [.091;.110] .265 [.251;.279] .544 [.529;.560] .814 [.802;.826] .954 [.947;.960]

RI .408 [.394;.424] .572 [.557;.588] .862 [.852;.873] .984 [.980;.988] .999 [.998;1] 1 [1;1]
RI-L .062 [.055;.070] .126 [.116;.136] .408 [.393;.424] .785 [.772;.798] .963 [.957;.969] .998 [.997;1]
ZCP-sum .078 [.071;.087] .120 [.111;.131] .283 [.270;.298] .575 [.560;.591] .864 [.854;.875] .975 [.970;.980]
ZCP-poly .068 [.061;.076] .134 [.123;.145] .414 [.399;.430] .774 [.761;.787] .958 [.952;.965] .999 [.998;1]

Vs:Vm

gANOVA .062 [.054;.069] .126 [.116;.136] .407 [.392;.422] .784 [.772;.797] .963 [.957;.969] .998 [.997;1]

RI .109 [.100;.119] .150 [.139;.161] .257 [.244;.271] .465 [.450;.480] .705 [.691;.719] .890 [.881;.900]
RI-L .080 [.072;.088] .100 [.091;.110] .185 [.173;.197] .350 [.336;.366] .581 [.566;.596] .804 [.792;.816]
ZCP-sum .072 [.064;.080] .083 [.075;.092] .131 [.121;.142] .241 [.228;.254] .407 [.392;.422] .610 [.595;.625]
ZCP-poly .070 [.063;.079] .091 [.083;.100] .165 [.154;.177] .322 [.307;.336] .556 [.541;.572] .777 [.764;.790]

Vp:Vs:Vm

gANOVA .080 [.072;.088] .100 [.092;.110] .185 [.173;.197] .350 [.336;.366] .581 [.566;.596] .804 [.792;.816]
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Table E.21: Power analysis of model M2 (see Table E.1): The data are simulated using
spherical random effects, without the interaction participants:stimuli. The models are
estimated with assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .074 [.067;.083] .146 [.136;.158] .383 [.368;.399] .713 [.699;.727] .922 [.913;.930] .989 [.986;.992]
RI-L .054 [.047;.061] .116 [.106;.126] .325 [.311;.340] .662 [.648;.677] .900 [.890;.909] .985 [.981;.989]
ZCP-sum .056 [.049;.063] .105 [.096;.115] .296 [.282;.310] .621 [.606;.636] .881 [.871;.891] .980 [.975;.984]
ZCP-poly .055 [.048;.063] .114 [.105;.125] .324 [.310;.339] .662 [.648;.677] .900 [.891;.910] .985 [.981;.989]

Vp

gANOVA .054 [.048;.062] .115 [.106;.126] .324 [.310;.339] .662 [.648;.677] .900 [.890;.909] .985 [.981;.989]

RI .086 [.078;.096] .183 [.172;.196] .468 [.453;.484] .784 [.771;.797] .951 [.945;.958] .996 [.994;.998]
RI-L .052 [.046;.060] .126 [.116;.136] .385 [.370;.400] .718 [.704;.732] .930 [.922;.938] .993 [.990;.996]
ZCP-sum .052 [.045;.059] .112 [.102;.122] .339 [.325;.354] .669 [.654;.683] .908 [.899;.917] .989 [.985;.992]
ZCP-poly .055 [.048;.063] .128 [.118;.139] .384 [.370;.400] .716 [.703;.731] .930 [.922;.937] .993 [.990;.995]

Vs

gANOVA .052 [.046;.060] .125 [.115;.136] .385 [.370;.400] .718 [.704;.732] .930 [.922;.938] .993 [.990;.996]

RI .550 [.535;.566] .702 [.688;.717] .920 [.912;.929] .991 [.988;.994] 1 [.999;1] 1 [1;1]
RI-L .047 [.041;.054] .136 [.126;.147] .437 [.422;.452] .803 [.791;.816] .968 [.963;.974] .998 [.996;.999]
ZCP-sum .071 [.063;.079] .117 [.107;.127] .297 [.283;.311] .612 [.597;.627] .885 [.875;.895] .980 [.975;.984]
ZCP-poly .051 [.045;.059] .147 [.136;.158] .447 [.432;.463] .799 [.787;.812] .965 [.959;.971] .998 [.996;.999]

Vm

gANOVA .047 [.041;.054] .136 [.126;.147] .436 [.421;.452] .802 [.790;.815] .968 [.963;.974] .998 [.996;.999]

RI .673 [.658;.687] .732 [.719;.746] .871 [.860;.881] .962 [.956;.968] .993 [.991;.996] 1 [.999;1]
RI-L .048 [.042;.055] .084 [.076;.093] .212 [.200;.225] .450 [.435;.466] .723 [.710;.737] .915 [.907;.924]
ZCP-sum .055 [.048;.063] .069 [.062;.077] .124 [.115;.135] .261 [.247;.275] .476 [.461;.492] .715 [.701;.729]
ZCP-poly .054 [.047;.061] .090 [.081;.099] .218 [.205;.231] .455 [.440;.470] .723 [.709;.737] .905 [.896;.914]

Vp:Vs

gANOVA .048 [.042;.055] .084 [.075;.093] .212 [.199;.225] .448 [.433;.464] .721 [.707;.735] .915 [.906;.924]

RI .608 [.593;.623] .696 [.682;.710] .857 [.846;.868] .965 [.960;.971] .998 [.997;.999] 1 [1;1]
RI-L .048 [.042;.056] .091 [.083;.101] .243 [.230;.257] .518 [.503;.534] .798 [.785;.810] .946 [.939;.953]
ZCP-sum .072 [.064;.080] .087 [.078;.096] .165 [.154;.177] .328 [.314;.343] .569 [.554;.585] .793 [.781;.806]
ZCP-poly .058 [.051;.066] .093 [.085;.103] .252 [.239;.266] .521 [.506;.537] .792 [.779;.804] .944 [.937;.952]

Vp:Vm

gANOVA .048 [.042;.055] .091 [.083;.101] .242 [.229;.256] .518 [.503;.534] .797 [.785;.810] .946 [.939;.953]

RI .543 [.528;.559] .697 [.683;.711] .914 [.906;.923] .991 [.988;.994] 1 [1;1] 1 [1;1]
RI-L .054 [.047;.061] .110 [.100;.120] .378 [.363;.393] .760 [.747;.774] .959 [.953;.965] .998 [.997;.999]
ZCP-sum .072 [.064;.080] .106 [.097;.116] .245 [.232;.259] .522 [.507;.538] .830 [.818;.841] .965 [.959;.970]
ZCP-poly .061 [.054;.069] .122 [.112;.132] .391 [.376;.406] .754 [.741;.768] .956 [.949;.962] .998 [.996;.999]

Vs:Vm

gANOVA .054 [.047;.061] .110 [.100;.120] .378 [.363;.393] .759 [.746;.773] .959 [.953;.965] .998 [.997;.999]

RI .261 [.247;.275] .310 [.296;.325] .460 [.445;.476] .666 [.652;.681] .858 [.848;.869] .954 [.948;.961]
RI-L .052 [.046;.060] .069 [.062;.077] .136 [.126;.147] .283 [.270;.298] .507 [.492;.523] .741 [.728;.755]
ZCP-sum .071 [.063;.079] .079 [.071;.088] .115 [.106;.125] .195 [.183;.207] .329 [.314;.343] .510 [.495;.526]
ZCP-poly .060 [.053;.068] .078 [.070;.087] .143 [.132;.154] .292 [.278;.306] .509 [.494;.525] .739 [.726;.753]

Vp:Vs:Vm

gANOVA .052 [.046;.060] .069 [.062;.077] .136 [.126;.148] .284 [.270;.298] .507 [.492;.523] .741 [.728;.755]
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Table E.22: Power analysis of model M2 (see Table E.1): The data are simulated using
spherical random effects, with the interaction participants:stimuli. The models are esti-
mated without assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .075 [.067;.084] .152 [.141;.164] .410 [.395;.425] .738 [.724;.751] .935 [.928;.943] .991 [.988;.994]
RI-L .056 [.049;.063] .117 [.107;.127] .350 [.335;.365] .686 [.672;.701] .918 [.910;.927] .986 [.983;.990]
ZCP-sum .054 [.047;.061] .109 [.100;.119] .312 [.298;.327] .642 [.627;.657] .892 [.882;.901] .984 [.980;.987]
ZCP-poly .055 [.048;.063] .120 [.110;.130] .350 [.335;.365] .686 [.672;.701] .918 [.910;.927] .986 [.983;.990]

Vp

gANOVA .056 [.049;.064] .117 [.107;.127] .350 [.335;.365] .686 [.672;.701] .918 [.910;.927] .986 [.983;.990]

RI .088 [.079;.097] .190 [.179;.203] .478 [.463;.494] .798 [.786;.811] .962 [.956;.968] .996 [.994;.998]
RI-L .053 [.046;.060] .128 [.118;.139] .394 [.379;.409] .738 [.725;.752] .943 [.936;.950] .994 [.992;.996]
ZCP-sum .050 [.043;.057] .111 [.102;.121] .339 [.325;.354] .675 [.661;.690] .922 [.913;.930] .990 [.987;.993]
ZCP-poly .052 [.046;.060] .128 [.118;.139] .394 [.379;.409] .736 [.723;.750] .942 [.935;.949] .994 [.992;.996]

Vs

gANOVA .053 [.046;.060] .128 [.118;.139] .394 [.379;.409] .738 [.725;.752] .943 [.936;.950] .994 [.992;.996]

RI .515 [.500;.531] .680 [.665;.694] .909 [.900;.918] .991 [.988;.994] 1 [.999;1] 1 [1;1]
RI-L .046 [.040;.054] .141 [.131;.152] .440 [.425;.456] .803 [.791;.815] .970 [.965;.976] .999 [.998;1]
ZCP-sum .070 [.062;.078] .108 [.099;.118] .282 [.269;.297] .607 [.592;.623] .888 [.878;.898] .983 [.979;.987]
ZCP-poly .053 [.046;.060] .145 [.134;.156] .441 [.426;.457] .795 [.783;.808] .970 [.964;.975] .999 [.998;1]

Vm

gANOVA .046 [.040;.054] .141 [.131;.152] .440 [.425;.456] .803 [.791;.815] .970 [.965;.976] .999 [.998;1]

RI .843 [.832;.854] .884 [.874;.894] .948 [.941;.955] .987 [.983;.990] 1 [.999;1] 1 [1;1]
RI-L .049 [.043;.056] .087 [.079;.096] .230 [.217;.243] .484 [.469;.500] .763 [.750;.776] .929 [.921;.937]
ZCP-sum .047 [.041;.054] .062 [.055;.070] .111 [.102;.121] .254 [.241;.268] .467 [.452;.483] .720 [.706;.734]
ZCP-poly .058 [.051;.065] .094 [.086;.104] .234 [.221;.248] .494 [.479;.510] .761 [.748;.774] .928 [.919;.936]

Vp:Vs

gANOVA .048 [.042;.055] .087 [.078;.096] .229 [.217;.243] .483 [.468;.498] .762 [.749;.776] .929 [.921;.937]

RI .558 [.542;.573] .662 [.648;.677] .840 [.828;.851] .958 [.951;.964] .994 [.991;.996] 1 [.999;1]
RI-L .049 [.043;.056] .095 [.087;.105] .247 [.234;.260] .522 [.507;.538] .800 [.788;.813] .949 [.942;.956]
ZCP-sum .064 [.056;.072] .088 [.080;.098] .162 [.151;.174] .327 [.313;.342] .572 [.557;.587] .791 [.778;.803]
ZCP-poly .059 [.052;.067] .099 [.090;.109] .257 [.244;.271] .532 [.517;.548] .791 [.779;.804] .944 [.937;.951]

Vp:Vm

gANOVA .049 [.043;.056] .095 [.086;.105] .246 [.234;.260] .522 [.506;.537] .800 [.787;.812] .949 [.942;.956]

RI .496 [.480;.511] .646 [.632;.661] .893 [.884;.903] .989 [.985;.992] 1 [1;1] 1 [1;1]
RI-L .053 [.046;.060] .121 [.111;.132] .380 [.365;.395] .757 [.744;.770] .953 [.946;.959] .997 [.995;.999]
ZCP-sum .067 [.060;.075] .102 [.093;.112] .244 [.231;.258] .521 [.505;.536] .813 [.801;.825] .960 [.954;.966]
ZCP-poly .054 [.048;.062] .132 [.122;.143] .388 [.374;.404] .756 [.743;.770] .948 [.942;.955] .998 [.996;.999]

Vs:Vm

gANOVA .053 [.046;.060] .121 [.111;.131] .380 [.365;.395] .756 [.743;.769] .952 [.946;.959] .997 [.995;.999]

RI .190 [.178;.203] .235 [.222;.249] .380 [.366;.396] .596 [.580;.611] .808 [.796;.821] .941 [.934;.948]
RI-L .050 [.044;.057] .071 [.063;.079] .140 [.130;.151] .292 [.279;.307] .516 [.500;.531] .754 [.741;.768]
ZCP-sum .072 [.064;.080] .086 [.078;.095] .122 [.112;.132] .199 [.187;.212] .334 [.320;.349] .512 [.497;.528]
ZCP-poly .064 [.057;.072] .084 [.075;.093] .159 [.148;.171] .308 [.294;.322] .527 [.512;.543] .754 [.741;.768]

Vp:Vs:Vm

gANOVA .050 [.044;.057] .071 [.063;.079] .140 [.130;.151] .292 [.278;.307] .516 [.501;.532] .754 [.741;.767]
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Table E.23: Power analysis of model M2 (see Table E.1): The data are simulated us-
ing spherical random effects, with the interaction participants:stimuli. The models are
estimated with assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .075 [.067;.084] .152 [.141;.164] .410 [.395;.425] .738 [.724;.751] .935 [.928;.943] .991 [.988;.994]
RI-L .056 [.049;.063] .117 [.108;.127] .350 [.336;.365] .686 [.672;.701] .918 [.910;.927] .986 [.983;.990]
ZCP-sum .054 [.047;.061] .109 [.100;.119] .312 [.298;.327] .644 [.629;.659] .892 [.883;.902] .984 [.980;.988]
ZCP-poly .056 [.049;.063] .120 [.110;.130] .351 [.336;.366] .686 [.672;.701] .918 [.910;.927] .987 [.983;.990]

Vp

gANOVA .056 [.049;.064] .117 [.107;.127] .350 [.335;.365] .686 [.672;.701] .918 [.910;.927] .986 [.983;.990]

RI .088 [.079;.097] .190 [.179;.203] .478 [.463;.494] .798 [.786;.811] .962 [.956;.968] .996 [.994;.998]
RI-L .053 [.047;.060] .129 [.119;.140] .395 [.380;.410] .739 [.725;.753] .943 [.936;.950] .994 [.992;.996]
ZCP-sum .051 [.045;.058] .112 [.102;.122] .341 [.327;.356] .676 [.662;.691] .922 [.914;.931] .990 [.987;.993]
ZCP-poly .053 [.046;.060] .128 [.118;.139] .394 [.379;.409] .737 [.723;.751] .942 [.935;.950] .994 [.992;.996]

Vs

gANOVA .053 [.046;.060] .129 [.119;.140] .395 [.380;.410] .739 [.725;.752] .943 [.936;.950] .994 [.992;.996]

RI .560 [.545;.576] .709 [.695;.723] .924 [.916;.932] .992 [.989;.995] 1 [.999;1] 1 [1;1]
RI-L .046 [.040;.053] .140 [.130;.152] .439 [.424;.455] .801 [.789;.814] .970 [.965;.975] .999 [.998;1]
ZCP-sum .069 [.062;.078] .108 [.098;.118] .282 [.268;.296] .606 [.591;.621] .887 [.877;.897] .983 [.979;.987]
ZCP-poly .052 [.046;.059] .144 [.134;.156] .441 [.426;.457] .795 [.783;.808] .970 [.964;.975] .999 [.998;1]

Vm

gANOVA .046 [.040;.053] .140 [.130;.151] .439 [.424;.455] .802 [.789;.814] .970 [.965;.976] .999 [.998;1]

RI .777 [.764;.790] .831 [.819;.843] .926 [.918;.934] .978 [.973;.982] .997 [.996;.999] 1 [1;1]
RI-L .049 [.043;.056] .088 [.079;.097] .231 [.218;.244] .485 [.470;.501] .764 [.751;.777] .930 [.922;.938]
ZCP-sum .047 [.041;.054] .062 [.055;.070] .113 [.104;.124] .257 [.244;.271] .472 [.457;.488] .724 [.710;.738]
ZCP-poly .058 [.051;.066] .095 [.087;.105] .236 [.223;.250] .496 [.480;.511] .763 [.750;.776] .928 [.920;.936]

Vp:Vs

gANOVA .048 [.042;.056] .087 [.079;.096] .230 [.217;.243] .484 [.469;.499] .763 [.750;.776] .930 [.922;.938]

RI .623 [.608;.638] .714 [.700;.728] .871 [.861;.882] .967 [.962;.973] .996 [.994;.998] 1 [.999;1]
RI-L .048 [.041;.055] .095 [.086;.104] .245 [.232;.259] .521 [.506;.537] .800 [.787;.812] .949 [.942;.956]
ZCP-sum .063 [.056;.071] .088 [.080;.098] .162 [.150;.173] .327 [.312;.341] .570 [.555;.585] .789 [.776;.802]
ZCP-poly .058 [.051;.065] .099 [.090;.109] .255 [.242;.269] .530 [.515;.546] .790 [.777;.803] .944 [.937;.951]

Vp:Vm

gANOVA .048 [.041;.055] .094 [.086;.104] .245 [.232;.259] .521 [.505;.536] .799 [.787;.812] .948 [.942;.955]

RI .560 [.544;.575] .702 [.688;.717] .916 [.907;.924] .993 [.990;.996] 1 [1;1] 1 [1;1]
RI-L .052 [.046;.060] .120 [.111;.131] .378 [.364;.394] .755 [.742;.769] .952 [.946;.959] .997 [.995;.999]
ZCP-sum .067 [.060;.075] .102 [.093;.112] .241 [.228;.254] .518 [.502;.533] .811 [.799;.823] .959 [.953;.965]
ZCP-poly .054 [.048;.062] .131 [.121;.142] .388 [.373;.404] .755 [.742;.768] .948 [.941;.955] .998 [.996;.999]

Vs:Vm

gANOVA .052 [.046;.060] .120 [.110;.130] .378 [.364;.394] .754 [.741;.768] .952 [.945;.959] .997 [.995;.999]

RI .271 [.257;.285] .327 [.313;.342] .477 [.462;.493] .690 [.676;.705] .867 [.856;.877] .964 [.958;.970]
RI-L .048 [.042;.055] .069 [.061;.077] .136 [.126;.147] .288 [.274;.302] .512 [.496;.527] .748 [.735;.762]
ZCP-sum .071 [.063;.079] .086 [.078;.095] .120 [.111;.131] .197 [.185;.210] .329 [.315;.344] .506 [.490;.521]
ZCP-poly .063 [.056;.071] .084 [.075;.093] .157 [.146;.169] .304 [.290;.319] .524 [.509;.540] .751 [.737;.764]

Vp:Vs:Vm

gANOVA .048 [.042;.055] .068 [.061;.077] .136 [.126;.147] .288 [.274;.302] .511 [.496;.527] .748 [.735;.762]
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Table E.24: Power analysis of model M2 (see Table E.1): The data are simulated using cor-
related random effects, without the interaction participants:stimuli. The models are esti-
mated without assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .076 [.069;.085] .169 [.158;.181] .390 [.375;.405] .706 [.692;.720] .910 [.901;.919] .990 [.987;.993]
RI-L .051 [.045;.059] .131 [.121;.142] .340 [.325;.354] .653 [.638;.668] .887 [.878;.897] .982 [.978;.986]
ZCP-sum .049 [.043;.056] .110 [.101;.121] .302 [.288;.317] .604 [.590;.620] .866 [.855;.876] .974 [.969;.979]
ZCP-poly .052 [.046;.060] .128 [.119;.139] .338 [.324;.353] .651 [.637;.666] .886 [.876;.896] .983 [.979;.987]

Vp

gANOVA .051 [.045;.059] .130 [.120;.141] .340 [.325;.355] .653 [.638;.668] .888 [.878;.897] .982 [.978;.986]

RI .085 [.077;.094] .174 [.163;.187] .472 [.457;.488] .797 [.784;.809] .955 [.949;.961] .996 [.993;.998]
RI-L .049 [.043;.056] .116 [.106;.126] .379 [.364;.394] .724 [.711;.738] .938 [.931;.945] .992 [.990;.995]
ZCP-sum .048 [.042;.055] .098 [.089;.107] .317 [.303;.332] .654 [.640;.669] .907 [.898;.916] .986 [.983;.990]
ZCP-poly .051 [.045;.058] .116 [.106;.126] .378 [.364;.394] .723 [.709;.737] .938 [.930;.945] .993 [.990;.995]

Vs

gANOVA .050 [.043;.057] .116 [.107;.127] .379 [.364;.394] .724 [.711;.738] .938 [.930;.945] .992 [.990;.995]

RI .443 [.428;.459] .611 [.596;.626] .878 [.868;.889] .983 [.979;.987] .999 [.998;1] 1 [1;1]
RI-L .056 [.049;.064] .140 [.130;.151] .444 [.429;.459] .794 [.782;.807] .962 [.957;.968] .997 [.996;.999]
ZCP-sum .072 [.065;.081] .122 [.113;.133] .315 [.301;.329] .649 [.634;.664] .896 [.886;.905] .988 [.984;.991]
ZCP-poly .061 [.054;.069] .147 [.136;.158] .443 [.428;.458] .794 [.782;.807] .960 [.954;.966] .997 [.996;.999]

Vm

gANOVA .056 [.049;.064] .140 [.130;.151] .443 [.428;.459] .794 [.782;.807] .962 [.957;.968] .997 [.996;.999]

RI .815 [.803;.827] .856 [.845;.867] .936 [.928;.944] .986 [.983;.990] .999 [.998;1] 1 [1;1]
RI-L .040 [.034;.046] .074 [.067;.083] .190 [.178;.203] .432 [.416;.447] .701 [.687;.715] .906 [.897;.915]
ZCP-sum .040 [.034;.046] .053 [.046;.060] .100 [.092;.110] .217 [.204;.230] .410 [.395;.425] .651 [.637;.666]
ZCP-poly .047 [.041;.054] .079 [.071;.088] .200 [.188;.213] .431 [.416;.446] .702 [.687;.716] .900 [.891;.910]

Vp:Vs

gANOVA .040 [.034;.046] .074 [.066;.083] .190 [.178;.202] .430 [.415;.446] .701 [.687;.715] .906 [.897;.915]

RI .471 [.456;.487] .564 [.549;.579] .766 [.753;.779] .931 [.923;.939] .987 [.983;.990] 1 [.999;1]
RI-L .056 [.049;.064] .101 [.092;.111] .261 [.247;.275] .526 [.510;.541] .798 [.786;.811] .946 [.940;.953]
ZCP-sum .070 [.062;.078] .092 [.084;.102] .186 [.174;.198] .363 [.348;.378] .614 [.599;.630] .831 [.819;.842]
ZCP-poly .058 [.051;.066] .105 [.096;.115] .272 [.259;.286] .525 [.510;.540] .788 [.775;.801] .940 [.933;.947]

Vp:Vm

gANOVA .056 [.049;.064] .101 [.092;.111] .260 [.247;.274] .525 [.510;.540] .798 [.786;.811] .946 [.940;.953]

RI .411 [.396;.427] .573 [.558;.589] .850 [.839;.861] .980 [.976;.984] .999 [.998;1] 1 [1;1]
RI-L .061 [.054;.069] .139 [.129;.150] .403 [.388;.418] .755 [.742;.769] .957 [.951;.963] .996 [.994;.998]
ZCP-sum .084 [.076;.093] .128 [.119;.139] .295 [.281;.309] .591 [.576;.606] .860 [.849;.871] .976 [.972;.981]
ZCP-poly .068 [.061;.076] .144 [.133;.155] .405 [.390;.420] .755 [.742;.769] .955 [.949;.961] .996 [.994;.998]

Vs:Vm

gANOVA .061 [.054;.069] .139 [.129;.150] .402 [.388;.418] .754 [.741;.768] .957 [.950;.963] .996 [.994;.998]

RI .114 [.104;.124] .150 [.140;.162] .261 [.247;.275] .466 [.451;.482] .696 [.681;.710] .888 [.878;.898]
RI-L .082 [.073;.090] .105 [.096;.115] .193 [.181;.206] .360 [.345;.375] .582 [.567;.598] .791 [.778;.803]
ZCP-sum .082 [.074;.091] .100 [.091;.110] .159 [.148;.170] .263 [.250;.277] .443 [.428;.458] .634 [.620;.650]
ZCP-poly .069 [.062;.077] .089 [.081;.098] .172 [.161;.184] .328 [.313;.342] .551 [.536;.566] .768 [.755;.781]

Vp:Vs:Vm

gANOVA .082 [.073;.090] .105 [.096;.115] .193 [.181;.206] .360 [.345;.375] .582 [.567;.597] .791 [.778;.803]
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Table E.25: Power analysis of model M2 (see Table E.1): The data are simulated using
correlated random effects, without the interaction participants:stimuli. The models are
estimated with assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .076 [.069;.085] .169 [.158;.181] .390 [.375;.405] .706 [.692;.720] .910 [.901;.919] .990 [.987;.993]
RI-L .054 [.047;.061] .134 [.123;.144] .346 [.331;.361] .658 [.644;.673] .890 [.881;.900] .984 [.980;.988]
ZCP-sum .052 [.045;.059] .121 [.111;.131] .315 [.301;.329] .620 [.605;.635] .871 [.860;.881] .978 [.973;.983]
ZCP-poly .054 [.048;.062] .134 [.123;.144] .344 [.330;.359] .656 [.641;.670] .890 [.881;.900] .984 [.980;.988]

Vp

gANOVA .054 [.047;.061] .133 [.122;.143] .346 [.331;.361] .658 [.643;.673] .890 [.881;.900] .984 [.980;.988]

RI .085 [.077;.094] .174 [.163;.187] .472 [.457;.488] .797 [.784;.809] .955 [.949;.961] .996 [.993;.998]
RI-L .052 [.046;.060] .121 [.112;.132] .386 [.371;.401] .730 [.717;.744] .939 [.932;.947] .993 [.990;.995]
ZCP-sum .051 [.045;.058] .104 [.095;.114] .334 [.319;.349] .672 [.658;.687] .914 [.905;.923] .988 [.984;.991]
ZCP-poly .054 [.047;.061] .121 [.111;.131] .385 [.370;.401] .730 [.717;.744] .940 [.932;.947] .993 [.990;.996]

Vs

gANOVA .053 [.046;.060] .122 [.112;.132] .387 [.372;.402] .730 [.717;.744] .939 [.932;.947] .993 [.990;.995]

RI .536 [.520;.551] .691 [.677;.705] .909 [.900;.918] .989 [.986;.992] 1 [.999;1] 1 [1;1]
RI-L .052 [.045;.059] .132 [.122;.143] .428 [.413;.444] .784 [.772;.797] .962 [.956;.968] .997 [.995;.999]
ZCP-sum .067 [.060;.075] .108 [.099;.118] .285 [.272;.300] .621 [.606;.636] .880 [.871;.891] .983 [.979;.987]
ZCP-poly .056 [.049;.063] .139 [.128;.150] .430 [.415;.445] .784 [.771;.797] .958 [.951;.964] .997 [.995;.999]

Vm

gANOVA .052 [.045;.059] .133 [.122;.143] .428 [.413;.444] .784 [.772;.797] .962 [.956;.968] .997 [.995;.999]

RI .670 [.656;.685] .736 [.722;.749] .866 [.856;.877] .966 [.960;.971] .995 [.993;.997] 1 [.999;1]
RI-L .046 [.040;.053] .085 [.077;.094] .205 [.193;.218] .452 [.437;.467] .718 [.704;.732] .916 [.907;.924]
ZCP-sum .052 [.045;.059] .068 [.061;.076] .128 [.118;.138] .260 [.247;.274] .476 [.460;.491] .714 [.700;.728]
ZCP-poly .055 [.048;.063] .090 [.082;.100] .216 [.204;.229] .456 [.441;.472] .724 [.710;.738] .911 [.902;.920]

Vp:Vs

gANOVA .046 [.040;.053] .084 [.076;.093] .205 [.193;.218] .451 [.435;.466] .718 [.704;.732] .915 [.906;.924]

RI .597 [.582;.613] .678 [.664;.693] .840 [.829;.851] .959 [.953;.965] .993 [.990;.996] 1 [.999;1]
RI-L .046 [.040;.053] .088 [.079;.097] .238 [.226;.252] .498 [.483;.514] .783 [.770;.796] .940 [.933;.948]
ZCP-sum .067 [.060;.075] .088 [.079;.097] .169 [.158;.181] .333 [.319;.348] .568 [.553;.584] .799 [.787;.811]
ZCP-poly .054 [.047;.061] .098 [.089;.107] .254 [.240;.267] .505 [.490;.521] .776 [.763;.789] .935 [.927;.943]

Vp:Vm

gANOVA .046 [.040;.053] .088 [.079;.097] .238 [.226;.252] .497 [.482;.513] .782 [.770;.795] .939 [.932;.947]

RI .543 [.528;.559] .699 [.685;.713] .908 [.899;.917] .989 [.985;.992] 1 [.999;1] 1 [1;1]
RI-L .052 [.045;.059] .121 [.111;.131] .380 [.365;.395] .736 [.722;.750] .950 [.943;.957] .996 [.994;.998]
ZCP-sum .078 [.070;.087] .116 [.106;.126] .258 [.245;.272] .537 [.522;.553] .822 [.810;.834] .968 [.963;.974]
ZCP-poly .061 [.054;.069] .130 [.120;.141] .384 [.369;.399] .741 [.728;.755] .950 [.943;.957] .995 [.993;.997]

Vs:Vm

gANOVA .052 [.045;.059] .121 [.111;.131] .380 [.365;.395] .735 [.722;.749] .949 [.943;.956] .996 [.994;.998]

RI .256 [.243;.270] .298 [.284;.312] .448 [.433;.464] .664 [.650;.679] .845 [.834;.856] .959 [.953;.965]
RI-L .055 [.049;.063] .074 [.066;.082] .138 [.128;.149] .288 [.274;.302] .506 [.490;.521] .740 [.727;.754]
ZCP-sum .080 [.072;.089] .092 [.083;.101] .132 [.122;.143] .212 [.199;.225] .352 [.338;.367] .531 [.515;.546]
ZCP-poly .058 [.052;.066] .080 [.072;.089] .144 [.134;.156] .289 [.276;.304] .513 [.498;.529] .730 [.716;.744]

Vp:Vs:Vm

gANOVA .055 [.049;.063] .074 [.066;.082] .138 [.128;.149] .288 [.274;.302] .506 [.491;.522] .739 [.726;.753]
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Table E.26: Power analysis of model M2 (see Table E.1): The data are simulated using
correlated random effects, with the interaction participants:stimuli. The models are esti-
mated without assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .080 [.072;.089] .164 [.152;.175] .408 [.393;.423] .723 [.709;.737] .918 [.909;.926] .989 [.985;.992]
RI-L .058 [.051;.066] .128 [.118;.139] .352 [.338;.367] .674 [.660;.689] .900 [.890;.909] .983 [.979;.987]
ZCP-sum .053 [.046;.060] .114 [.105;.124] .313 [.299;.328] .634 [.619;.649] .883 [.873;.893] .976 [.972;.981]
ZCP-poly .059 [.052;.066] .128 [.118;.139] .353 [.338;.368] .673 [.659;.688] .900 [.890;.909] .984 [.980;.988]

Vp

gANOVA .058 [.051;.066] .128 [.118;.139] .352 [.338;.367] .675 [.660;.689] .900 [.890;.909] .983 [.979;.987]

RI .086 [.077;.095] .183 [.171;.195] .476 [.461;.492] .802 [.789;.814] .961 [.955;.967] .996 [.993;.998]
RI-L .048 [.042;.055] .127 [.117;.137] .386 [.371;.401] .739 [.726;.753] .943 [.936;.950] .993 [.991;.996]
ZCP-sum .047 [.041;.054] .104 [.095;.114] .326 [.312;.341] .677 [.663;.692] .921 [.913;.929] .989 [.986;.992]
ZCP-poly .049 [.042;.056] .126 [.116;.137] .389 [.374;.404] .737 [.723;.750] .941 [.933;.948] .993 [.991;.996]

Vs

gANOVA .048 [.042;.055] .127 [.117;.137] .386 [.371;.402] .740 [.726;.753] .943 [.936;.950] .993 [.991;.996]

RI .528 [.513;.544] .679 [.664;.693] .899 [.890;.908] .987 [.983;.991] .998 [.997;1] 1 [1;1]
RI-L .049 [.043;.056] .147 [.137;.159] .446 [.431;.462] .794 [.782;.807] .963 [.957;.969] .996 [.995;.998]
ZCP-sum .068 [.060;.076] .119 [.109;.129] .315 [.301;.329] .629 [.614;.644] .890 [.880;.899] .982 [.978;.986]
ZCP-poly .054 [.047;.061] .151 [.140;.162] .447 [.432;.463] .796 [.784;.809] .964 [.959;.970] .996 [.995;.998]

Vm

gANOVA .048 [.042;.056] .147 [.136;.158] .446 [.430;.461] .794 [.782;.807] .963 [.957;.969] .996 [.995;.998]

RI .834 [.823;.846] .877 [.867;.887] .957 [.950;.963] .990 [.987;.993] 1 [1;1] 1 [1;1]
RI-L .050 [.044;.058] .092 [.084;.102] .234 [.221;.248] .490 [.475;.505] .774 [.761;.787] .936 [.928;.943]
ZCP-sum .049 [.043;.056] .064 [.057;.072] .123 [.113;.134] .253 [.240;.267] .472 [.457;.487] .719 [.705;.733]
ZCP-poly .059 [.052;.067] .096 [.087;.106] .245 [.232;.259] .492 [.477;.508] .768 [.755;.781] .934 [.927;.942]

Vp:Vs

gANOVA .050 [.044;.058] .092 [.084;.102] .234 [.221;.247] .489 [.474;.505] .774 [.761;.787] .935 [.928;.943]

RI .555 [.540;.571] .647 [.633;.662] .833 [.822;.845] .958 [.952;.964] .996 [.994;.998] 1 [1;1]
RI-L .053 [.046;.060] .092 [.084;.102] .248 [.235;.262] .519 [.504;.535] .787 [.775;.800] .948 [.941;.955]
ZCP-sum .069 [.061;.077] .087 [.078;.096] .166 [.155;.178] .346 [.331;.361] .573 [.558;.589] .809 [.797;.821]
ZCP-poly .058 [.051;.066] .102 [.093;.112] .254 [.241;.268] .519 [.503;.534] .782 [.770;.795] .945 [.938;.952]

Vp:Vm

gANOVA .052 [.046;.060] .093 [.084;.102] .248 [.235;.262] .519 [.503;.534] .786 [.774;.799] .946 [.940;.953]

RI .500 [.485;.516] .655 [.640;.670] .882 [.872;.892] .985 [.982;.989] 1 [.999;1] 1 [1;1]
RI-L .048 [.042;.055] .122 [.112;.133] .395 [.380;.410] .745 [.731;.758] .948 [.941;.954] .996 [.994;.998]
ZCP-sum .066 [.059;.074] .107 [.098;.117] .251 [.238;.265] .543 [.528;.559] .820 [.808;.832] .960 [.954;.966]
ZCP-poly .057 [.050;.064] .130 [.120;.141] .401 [.386;.417] .740 [.726;.754] .943 [.936;.950] .995 [.993;.997]

Vs:Vm

gANOVA .048 [.042;.055] .122 [.112;.133] .395 [.380;.410] .744 [.731;.758] .947 [.940;.954] .996 [.994;.998]

RI .192 [.181;.205] .240 [.227;.253] .371 [.356;.386] .583 [.568;.599] .804 [.792;.816] .939 [.932;.946]
RI-L .058 [.051;.066] .076 [.068;.085] .150 [.140;.162] .296 [.283;.311] .516 [.501;.532] .749 [.735;.762]
ZCP-sum .087 [.078;.096] .099 [.090;.109] .141 [.131;.152] .229 [.216;.242] .353 [.338;.368] .528 [.513;.543]
ZCP-poly .063 [.056;.071] .083 [.075;.092] .159 [.148;.171] .306 [.292;.321] .525 [.510;.541] .752 [.739;.766]

Vp:Vs:Vm

gANOVA .058 [.052;.066] .076 [.068;.085] .150 [.140;.162] .296 [.283;.311] .516 [.501;.532] .748 [.735;.762]
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Table E.27: Power analysis of model M2 (see Table E.1): The data are simulated us-
ing correlated random effects, with the interaction participants:stimuli. The models are
estimated with assuming random effects associated to the interaction participants:stimuli.

variable model H0 0.2 0.4 0.6 0.8 1.0

RI .080 [.072;.089] .164 [.152;.175] .408 [.393;.423] .723 [.709;.737] .918 [.909;.926] .989 [.985;.992]
RI-L .059 [.052;.066] .128 [.118;.139] .353 [.338;.368] .675 [.660;.689] .900 [.890;.909] .983 [.979;.987]
ZCP-sum .053 [.047;.061] .114 [.105;.125] .314 [.300;.328] .635 [.620;.650] .883 [.873;.893] .976 [.972;.981]
ZCP-poly .058 [.052;.066] .129 [.119;.139] .353 [.339;.368] .673 [.659;.688] .900 [.890;.909] .984 [.980;.988]

Vp

gANOVA .058 [.051;.066] .128 [.118;.139] .353 [.338;.368] .675 [.661;.690] .900 [.890;.909] .983 [.979;.987]

RI .086 [.077;.095] .183 [.171;.195] .476 [.461;.492] .802 [.789;.814] .961 [.955;.967] .996 [.993;.998]
RI-L .048 [.042;.055] .127 [.117;.138] .386 [.372;.402] .740 [.727;.754] .943 [.936;.950] .993 [.991;.996]
ZCP-sum .047 [.041;.054] .104 [.095;.114] .326 [.312;.341] .679 [.664;.693] .922 [.914;.930] .989 [.986;.992]
ZCP-poly .049 [.043;.056] .126 [.116;.137] .390 [.375;.405] .737 [.724;.751] .941 [.934;.948] .994 [.991;.996]

Vs

gANOVA .048 [.042;.055] .127 [.117;.138] .387 [.372;.402] .740 [.727;.754] .943 [.936;.950] .993 [.991;.996]

RI .575 [.560;.591] .710 [.696;.724] .914 [.906;.923] .989 [.986;.992] .999 [.998;1] 1 [1;1]
RI-L .048 [.042;.055] .147 [.137;.159] .445 [.430;.461] .794 [.781;.806] .963 [.957;.969] .996 [.995;.998]
ZCP-sum .068 [.060;.076] .118 [.108;.128] .314 [.300;.328] .628 [.613;.643] .888 [.879;.898] .982 [.978;.986]
ZCP-poly .053 [.047;.061] .150 [.140;.162] .446 [.431;.462] .796 [.784;.809] .964 [.959;.970] .996 [.995;.998]

Vm

gANOVA .048 [.042;.055] .147 [.136;.158] .444 [.429;.460] .794 [.781;.806] .963 [.957;.969] .996 [.995;.998]

RI .762 [.749;.775] .826 [.814;.837] .932 [.924;.940] .982 [.978;.986] .999 [.998;1] 1 [1;1]
RI-L .051 [.044;.058] .093 [.084;.102] .235 [.223;.249] .492 [.477;.508] .775 [.762;.788] .935 [.928;.943]
ZCP-sum .050 [.043;.057] .065 [.058;.073] .124 [.114;.135] .255 [.241;.268] .474 [.459;.490] .721 [.707;.735]
ZCP-poly .059 [.052;.067] .097 [.088;.106] .247 [.234;.261] .494 [.478;.509] .770 [.757;.783] .935 [.928;.943]

Vp:Vs

gANOVA .051 [.044;.058] .093 [.084;.102] .235 [.222;.249] .492 [.477;.507] .775 [.762;.788] .935 [.928;.943]

RI .609 [.594;.625] .696 [.682;.711] .866 [.856;.877] .968 [.963;.974] .996 [.995;.998] 1 [1;1]
RI-L .052 [.046;.059] .093 [.084;.102] .247 [.234;.260] .517 [.502;.533] .786 [.773;.798] .948 [.941;.955]
ZCP-sum .068 [.060;.076] .087 [.078;.096] .165 [.154;.177] .343 [.329;.358] .570 [.555;.586] .807 [.795;.819]
ZCP-poly .057 [.050;.065] .101 [.092;.111] .253 [.240;.267] .517 [.502;.533] .780 [.768;.793] .944 [.937;.951]

Vp:Vm

gANOVA .051 [.045;.059] .092 [.084;.102] .246 [.234;.260] .517 [.501;.532] .785 [.772;.798] .946 [.940;.953]

RI .574 [.558;.589] .703 [.689;.717] .905 [.896;.914] .988 [.985;.991] 1 [.999;1] 1 [1;1]
RI-L .048 [.041;.055] .121 [.111;.131] .394 [.379;.409] .744 [.731;.758] .947 [.940;.954] .996 [.994;.998]
ZCP-sum .065 [.058;.073] .106 [.097;.116] .249 [.236;.263] .541 [.526;.557] .817 [.805;.829] .958 [.952;.964]
ZCP-poly .056 [.050;.064] .129 [.119;.140] .400 [.385;.415] .739 [.725;.752] .942 [.935;.949] .995 [.993;.997]

Vs:Vm

gANOVA .048 [.042;.055] .120 [.111;.131] .393 [.378;.409] .744 [.731;.758] .946 [.940;.953] .996 [.994;.998]

RI .270 [.257;.285] .323 [.309;.338] .462 [.447;.477] .679 [.664;.693] .863 [.853;.874] .962 [.956;.968]
RI-L .057 [.050;.065] .075 [.067;.083] .148 [.138;.160] .293 [.280;.308] .512 [.497;.528] .746 [.733;.760]
ZCP-sum .084 [.076;.093] .098 [.089;.108] .139 [.129;.150] .225 [.213;.239] .350 [.335;.365] .520 [.505;.536]
ZCP-poly .062 [.055;.070] .082 [.074;.091] .156 [.146;.168] .302 [.288;.317] .520 [.505;.536] .749 [.735;.762]

Vp:Vs:Vm

gANOVA .057 [.050;.065] .075 [.067;.084] .148 [.138;.160] .293 [.279;.307] .512 [.497;.528] .746 [.733;.760]



E.3. Results of Simulation: gANOVA vs RI-L 175

E.3 Results of Simulation: gANOVA vs RI-L

Table E.28: Type I error rate of design M1 where the data are generated without random
intercepts. Subset of data simulated using 18 stimuli.

RI-L RI-L+ gANOVA gANOVA+

no PT:SM .023 [.019;.028] .023 [.019;.028] .045 [.039;.052] .045 [.039;.052]corr. PT:SM .026 [.021;.031] .026 [.021;.031] .051 [.045;.058] .051 [.045;.059]
no PT:SM .018 [.015;.023] .018 [.015;.023] .048 [.042;.055] .048 [.042;.055]Vp

spheric. PT:SM .021 [.017;.026] .021 [.017;.026] .044 [.038;.051] .044 [.038;.051]

no PT:SM .034 [.029;.040] .034 [.029;.040] .051 [.045;.059] .051 [.045;.059]corr. PT:SM .040 [.035;.047] .040 [.034;.047] .051 [.045;.059] .051 [.045;.059]
no PT:SM .036 [.030;.042] .036 [.030;.042] .052 [.045;.059] .052 [.045;.059]Vs

spheric. PT:SM .042 [.036;.048] .041 [.036;.048] .050 [.043;.057] .050 [.043;.057]

no PT:SM .120 [.110;.131] .120 [.110;.131] .050 [.044;.058] .050 [.044;.058]corr. PT:SM .115 [.106;.126] .115 [.106;.125] .051 [.044;.058] .050 [.044;.058]
no PT:SM .113 [.104;.124] .113 [.104;.124] .050 [.044;.058] .050 [.044;.058]Vm

spheric. PT:SM .105 [.096;.115] .105 [.096;.115] .051 [.045;.059] .051 [.045;.058]

no PT:SM .112 [.102;.122] .112 [.102;.122] .048 [.042;.055] .048 [.042;.055]corr. PT:SM .106 [.097;.116] .106 [.097;.116] .044 [.039;.051] .044 [.039;.051]
no PT:SM .109 [.100;.119] .109 [.100;.119] .049 [.043;.056] .049 [.043;.056]Vp:Vs

spheric. PT:SM .110 [.100;.120] .109 [.100;.119] .050 [.043;.057] .050 [.043;.057]

no PT:SM .082 [.074;.091] .082 [.074;.091] .051 [.045;.058] .051 [.045;.058]corr. PT:SM .079 [.071;.088] .079 [.071;.088] .050 [.044;.058] .050 [.044;.057]
no PT:SM .079 [.071;.088] .079 [.071;.088] .052 [.046;.059] .052 [.046;.059]Vp:Vm

spheric. PT:SM .080 [.072;.088] .079 [.071;.088] .050 [.044;.058] .050 [.044;.057]

no PT:SM .066 [.059;.074] .066 [.059;.074] .044 [.038;.051] .044 [.038;.051]corr. PT:SM .068 [.061;.076] .068 [.061;.076] .047 [.041;.054] .047 [.041;.054]
no PT:SM .083 [.075;.092] .083 [.075;.092] .060 [.053;.068] .060 [.053;.068]Vs:Vm

spheric. PT:SM .083 [.075;.092] .083 [.075;.092] .060 [.053;.067] .060 [.053;.067]

no PT:SM .036 [.031;.043] .036 [.031;.043] .042 [.037;.049] .042 [.037;.049]corr. PT:SM .038 [.033;.045] .038 [.033;.045] .051 [.045;.059] .051 [.045;.058]
no PT:SM .035 [.030;.041] .035 [.030;.041] .044 [.038;.050] .044 [.038;.050]Vp:Vs:Vm

spheric. PT:SM .035 [.030;.041] .035 [.030;.041] .045 [.039;.052] .045 [.039;.052]
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Table E.29: Type I error rate of design M1 where the data are generated without random
intercepts. Subset of data simulated using 36 stimuli.

RI-L RI-L+ gANOVA gANOVA+

no PT:SM .005 [.003;.008] .005 [.003;.008] .046 [.040;.054] .046 [.040;.054]corr. PT:SM .006 [.004;.008] .006 [.004;.008] .049 [.043;.056] .049 [.043;.056]
no PT:SM .006 [.004;.008] .006 [.004;.008] .051 [.045;.058] .051 [.045;.058]Vp

spheric. PT:SM .005 [.003;.008] .005 [.003;.008] .039 [.033;.045] .039 [.033;.045]

no PT:SM .064 [.057;.072] .064 [.057;.072] .048 [.042;.056] .048 [.042;.056]corr. PT:SM .066 [.059;.074] .066 [.058;.074] .050 [.044;.057] .050 [.044;.058]
no PT:SM .061 [.054;.069] .062 [.054;.069] .048 [.041;.055] .048 [.041;.055]Vs

spheric. PT:SM .063 [.056;.071] .062 [.055;.070] .047 [.041;.054] .047 [.041;.054]

no PT:SM .119 [.109;.129] .119 [.109;.129] .047 [.041;.054] .047 [.041;.054]corr. PT:SM .118 [.108;.128] .118 [.108;.128] .050 [.043;.057] .050 [.043;.057]
no PT:SM .117 [.107;.127] .117 [.107;.127] .046 [.040;.054] .046 [.040;.054]Vm

spheric. PT:SM .107 [.098;.117] .107 [.098;.117] .051 [.044;.058] .051 [.044;.058]

no PT:SM .114 [.105;.125] .114 [.105;.125] .052 [.045;.059] .052 [.045;.059]corr. PT:SM .114 [.104;.124] .113 [.104;.123] .050 [.044;.058] .050 [.044;.058]
no PT:SM .113 [.103;.123] .113 [.103;.123] .047 [.041;.054] .047 [.041;.054]Vp:Vs

spheric. PT:SM .111 [.101;.121] .110 [.101;.121] .050 [.044;.058] .050 [.044;.058]

no PT:SM .095 [.086;.104] .095 [.086;.104] .051 [.045;.058] .051 [.045;.058]corr. PT:SM .099 [.090;.109] .099 [.090;.108] .051 [.045;.059] .051 [.045;.059]
no PT:SM .092 [.083;.101] .092 [.083;.101] .052 [.045;.059] .052 [.045;.059]Vp:Vm

spheric. PT:SM .089 [.081;.099] .089 [.081;.099] .052 [.046;.060] .052 [.046;.060]

no PT:SM .056 [.050;.064] .056 [.050;.064] .048 [.042;.055] .048 [.042;.055]corr. PT:SM .055 [.049;.063] .055 [.049;.063] .048 [.041;.055] .048 [.041;.055]
no PT:SM .059 [.052;.067] .059 [.052;.067] .048 [.042;.055] .048 [.042;.055]Vs:Vm

spheric. PT:SM .058 [.052;.066] .058 [.051;.066] .051 [.045;.058] .051 [.045;.058]

no PT:SM .040 [.035;.047] .040 [.034;.047] .052 [.045;.059] .052 [.045;.059]corr. PT:SM .037 [.032;.043] .037 [.032;.043] .051 [.045;.059] .051 [.045;.059]
no PT:SM .033 [.028;.039] .033 [.028;.039] .047 [.041;.054] .047 [.041;.054]Vp:Vs:Vm

spheric. PT:SM .032 [.027;.038] .032 [.027;.038] .048 [.042;.056] .048 [.042;.055]
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Figure F.1: Average power of the test of VM for the model with 9 stimuli and 21 partici-
pants.
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Figure F.2: Average power of the test of VM for the model with 9 stimuli and 21 partici-
pants.
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Figure F.3: Average power of the test of VM for the model with 9 stimuli and 21 partici-
pants.
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Figure F.4: Average power of the test of VM for the model with 18 stimuli and 20 partic-
ipants.
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Figure F.5: Average power of the test of VS for the model with 18 stimuli and 20 partici-
pants.
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Figure F.6: Average power of the test of VM for the model with 18 stimuli and 20 partic-
ipants.



184 Appendix F. Supplementary Simulation Results for Chapter 5

Time

0

True effect of VP, 1 parameter

Time

Average power: H0.

0.00

0.02

0.04

0.06

0.08

0.10

ANOVA (cluster−mass)
ANOVA, log−p (cluster−mass)
ANOVA, param. (B.−H.)
Quasi−F, log−p (cluster−mass)
Quasi−F, param. (B.−H.)

Time

Average power: effect size x1.

0

0.2

0.4

0.6

0.8

1

Time

Average power: effect size x2.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Time

Figure F.7: Average power of the test of VP for the model with 36 stimuli and 20 partici-
pants.



185

Time

0

True effect of VS, 2 parameters

Time

Average power: H0.

0

0.2

0.4

0.6

0.8

1
ANOVA (cluster−mass)
ANOVA, log−p (cluster−mass)
ANOVA, param. (B.−H.)
Quasi−F, log−p (cluster−mass)
Quasi−F, param. (B.−H.)

Time

Average power: effect size x1.

0

0.2

0.4

0.6

0.8

1

Time

Average power: effect size x2.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Time

Figure F.8: Average power of the test of VS for the model with 36 stimuli and 20 partici-
pants.
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Figure F.9: Average power of the test of VM for the model with 36 stimuli and 20 partic-
ipants.
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Figure F.10: Average power of the test of VP for the model with 36 stimuli and 40
participants.



188 Appendix F. Supplementary Simulation Results for Chapter 5

Time

0

True effect of VS, 2 parameters

Time

Average power: H0.

0

0.2

0.4

0.6

0.8

1
ANOVA (cluster−mass)
ANOVA, log−p (cluster−mass)
ANOVA, param. (B.−H.)
Quasi−F, log−p (cluster−mass)
Quasi−F, param. (B.−H.)

Time

Average power: effect size x1.

0

0.2

0.4

0.6

0.8

1

Time

Average power: effect size x2.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Time

Figure F.11: Average power of the test of VS for the model with 36 stimuli and 40
participants.
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Figure F.12: Average power of the test of VM for the model with 36 stimuli and 40
participants.
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